GORDON COUNTY HAZARD MITIGATION PLAN 2016 Including the Cities of Calhoun, Fairmount, Plainville and Ranger, and the Town of Resaca # **Table of Contents** | Chapter 1 – Introduction·····4 | |--| | 1.1 Purpose | | 1.2 Organization of the Plan·····5 | | 1.3 Participants in Planning Process······8 | | 1.4 HRV Summary/Mitigation Goals·····.10 | | 1.5 Multi-Jurisdictional Special Considerations | | 1.6 Adoption, Implementation, Monitoring, Evaluation | | 1.7 Review and Incorporation | | 1.8 Scope of Updates····· | | 1.9 Brief County Overview | | Chapter 2 – Local Natural Hazard, Risk and Vulnerability Summary | | 2.5 Wildfire | | 2.6 Drought····· | | 2.7 Earthquakes·····84 | | 2.8 Landslides | | Chapter 3 – Local Technological Hazard Risk & Vulnerability Summary105 | | 3.1 Hazardous Materials Release···· | | 3.2 Dam Failure114 | | Chapter 4 – Land Use and Development Trends······120 | | Chapter 5 – Hazard Mitigation Goals, Objectives, and Actions | |--| | | | Chapter 6 – Executing the Plan······ | | 6.1 Action Plan Implementation······134 | | 6.2 Evaluation | | 6.3 Multi-Jurisdictional Strategy and Considerations | | 6.4 Plan Update and Maintenance·······135 | | Chapter 7 – Conclusion | | 7.1 Summary | | 7.2 References·····140 | | Appendices | | Appendix A – Critical Facilities Database | | Appendix B – Hazard History Database | | Appendix C – Hazard Frequency Table | | Appendix D – Other Planning Documents | | Appendix E – Glossary | # Chapter 1 ## **Introduction** ## 1.1 Purpose The Disaster Mitigation Act of 2000 has helped to bring attention to the need for successful hazard mitigation planning throughout the United States. Section 322 of the Act emphasizes the importance of comprehensive multi-hazard planning at the local level, both natural and technological, and the necessity of effective coordination between State and local entities to promote an integrated, comprehensive approach to mitigation planning. The Hazard Mitigation Planning and Hazard Mitigation Grant Program (HMGP) interim final rule published on February 26, 2002, identifies these new local mitigation planning requirements. According to this rule, state and local governments are required to develop, submit, and obtain FEMA approval of a hazard mitigation plan (HMP). Completion of an HMP that meets the new Federal requirements will increase access to funds for local governments and allow them to remain eligible for Stafford Act assistance. The HMP becomes part of the foundation for emergency management planning, exercises, training, preparedness and mitigation within the County. Such a plan sets the stage for long-term disaster resistance through identification of actions that will, over time, reduce the exposure of people and property to identifiable hazards. This plan provides an overview of the hazards that threaten the County, and what safeguards have been implemented, or may need to considered for implementation in the future. Hazards, for purposes of this plan, have been divided into two basic categories: natural and technological. Natural hazards include all hazards that are not caused either directly or indirectly by man and are frequently related to weather events, such as tornados and winter storms. Technological hazards include hazards that are directly or indirectly caused by man, including hazardous materials spills and weapons of mass destruction (WMD) events, although terrorism is not the particular focus of this Plan. This Plan also makes some recommendations that transcend this classification of natural and technological hazards. In other words, some of the recommendations contained within this Plan apply to many or all hazards. This is commonly referred to as an "all-hazards approach". Most hazards throughout the United States could happen anytime and anywhere. However, the main focus of this plan is on those hazards that are most likely to affect Gordon County and the Cities of Calhoun, Fairmount, Plainville and Ranger, and the Town of Resaca in the future. #### 1.2 Organization of the Plan The Hazard Mitigation Plan (HMP) consists of four main components: 1) the narrative plan, 2) the Hazard History Database, 3) the Hazard Frequency Table, and 4) a Critical Facilities Database. The narrative plan itself is the main component of the HMP. This part of the Plan includes an overview of the planning process, a summary of the County's hazard history, hazard frequency projections, a detailed discussion of proposed mitigation measures, and a description of how future reviews and updates to the Plan will be handled. The Hazard History Database is attached as a Microsoft Excel spreadsheet and includes relevant information on past hazards within the County. The Hazard Frequency Table is derived from the hazard history and provides frequency-related statistics for each discussed hazard. This table is also attached as a Microsoft Excel spreadsheet. Finally, the Critical Facilities Database is an online tool developed in part by UGA for GEMA that contains detailed information on critical facilities within the County. facilities for the purposes of this plan are those facilities that are among the most important within a specific jurisdiction with regard to the security and welfare of the persons and property within that jurisdiction. Typical critical facilities include hospitals, fire stations, police stations, critical records storage locations, etc. These facilities will be given special consideration during mitigation planning. For instance, a critical facility should not be located in a floodplain if at all possible. Using the critical facilities information, including GPS coordinates and replacement values, along with different hazard maps from GEMA, this database becomes a valuable planning tool that can be used by Counties to help estimate losses and assess vulnerabilities. This interactive Critical Facilities Database will also help to integrate mitigation planning into their other planning processes. The following map displays the location of critical facilities within Gordon County and the Cities of Calhoun, Fairmount, Plainville and Ranger, and the Town of Resaca. These facilities may be viewed in much greater detail within the Critical Facilities Database. Access to this database is limited and can only be viewed with the permission of the EMA Director due to the sensitive nature of some of the information. **Gordon County Critical Facilities Map** A risk assessment, which is composed of elements from each of the four main HMP components, provides the factual basis for all mitigation activities proposed within this Plan. Inventory of Critical Facilities: Critical facilities are defined as facilities that provide essential products and services to the public. Many of these facilities are government buildings that provide a multitude of services to the public, including most public safety disciplines such as emergency management, fire, police, and EMS. Other government buildings/facilities commonly classified as critical facilities are water distribution systems, wastewater treatment facilities, public works, public schools, administrative services, and post offices. For the purposes of this Plan, critical facilities have been identified by the HMPC and important information gathered for each one. This information is located in the Critical Facilities Database (Appendix A). *Hazard Identification*: During the planning process, a hazard history was created based upon available records from the past fifty years. This hazard history includes the natural and technological hazards that are most likely to affect the County. Unfortunately, record keeping was not as accurate or detailed decades ago as it is now. Therefore, the most useful information relating to these hazard events is found within the last ten to fifteen years. This fact is obvious upon review of the Hazard History Database (Appendix B), and the Hazard Frequency Table (Appendix C). *Profile of Hazard Events*: Each hazard identified was analyzed to determine likely causes and characteristics, and what portions of the County's population and infrastructure were most affected. However, each of the hazards discussed in this Plan has the potential to negatively impact any given point within the County. A profile of each hazard discussed in this plan is provided in Chapter 2. *Vulnerability Assessment*: This step is accomplished with the Critical Facilities Database by comparing GEMA hazard maps with the inventory of affected critical facilities, other buildings, and population exposed to each hazard (see Worksheets 3a). Estimating Losses: Using the best available data, this step involved estimating structural and other financial losses resulting from a specific hazard. This is also accomplished to some degree using the Critical Facilities Database. Describing vulnerability in terms of dollar amounts provides the County with a rough framework in which to estimate the potential effects of hazards on the built environment. Based on information gathered, the Plan identifies some specific mitigation goals, objectives, and actions to reduce exposure or impact from hazards that have the most impact on each community. A framework for Plan implementation and maintenance is also presented within this document. Planning grant funds from the Federal Emergency Management Agency, administered by GEMA, funded the HMP. The HMP was developed by the HMPC, with technical assistance from GEMA and North Georgia Consulting Group. ## 1.3 Participants in Planning Process This Hazard Mitigation Plan (HMP) is designed to protect both the unincorporated areas of the County as well as the Cities. Though the County facilitated this planning process, the Cities of Calhoun, Fairmount, Plainville and Ranger, and the Town of Resaca provided critical input into the process.
Without this mutual cooperation, the Plan would not exist in its present comprehensive form. Note: Please keep in mind that throughout this Plan, the term "county" typically refers to all of Gordon County, including the Cities of Calhoun, Fairmount, Plainville and Ranger, and the Town of Resaca. The process for updating Gordon County's Hazard Mitigation Plan can be found in the Federal Emergency Management Agency's (FEMA) Hazard Mitigation Planning's "How To" Guides. According to "Getting Started: Building Support for Mitigation Planning;" the suggested process for preparing a Hazard Mitigation Plan is to 1) Organize resources and identify stakeholders and those holding technical expertise; 2) Access risks to the community; 3) Develop a Mitigation Plan and lastly; 4) Implement and Monitor that plan once it is adopted. (FEMA 386-1) The Gordon County Hazard Mitigation Planning Committee (HMPC) is made up of a variety of members. The Chairman of the HMPC is the County EMA Director. The Chairman's responsibilities include all decisions relating to the overall direction of the Plan, retrieval of data from various departments, and serving as a central point of contact for all matters relating to the Plan. The consultant, NGCG, is responsible for facilitation of HMPC meetings, integration of updated data into the Plan, grant administration, and other administrative functions. The HMPC was represented by local government officials, County, City, and Town employees, and representatives from Georgia Forestry, North Georgia EMC, Georgia Northwestern Technical College, Gordon Hospital, and Georgia State Patrol. Representatives for other utilities and local businesses were also extended an invitation to participate. Potential participants were invited either verbally or by email, depending upon the participant. Each jurisdiction had representatives on the HMPC which provided critical data for consideration through meetings, email, and/or site visits. This diverse group provided valuable input into the planning process including identifying hazards and developing important mitigation measures to be considered in the future. The entire HMPC met several times over the course of this planning process. These meetings occurred on November 5, 2015, December 7, 2015, January 19, 2016, February 16, 2016, April 14, 2016, and July 12, 2016. Other meetings were held throughout this planning process at various times between two or more HMPC members in order to accomplish smaller tasks. Two public meetings relating to this Plan are required by FEMA: one during the drafting stages of the Plan, and one after the final version of the Plan is completed. The first of these two meetings occurred on July 12, 2016 during the drafting stages of the Plan. Once necessary revisions were made to the Plan, a second public meeting was held on XXX where it was adopted by Gordon County. A copy of the adoption resolution is included in the Appendices. Prior to adoption at the final public meeting, the public was provided with an additional opportunity to review and comment on the Plan. This final version was then submitted to GEMA and FEMA for review and approval. All public meetings were advertised in the local newspaper and the draft Plan update was posted on the county website as shown below. The Plan is the result of a community-wide effort put forth over the past several months utilizing FEMA's Hazard Mitigation Plan "How To" Guides to aid in laying out the planning process described above. Stakeholders and persons with technical expertise were identified early in the process. Participation was provided by Gordon County and the Cities of Calhoun, Fairmount, Plainville and Ranger, and the Town of Resaca. Each jurisdiction had representatives on the Hazard Mitigation Planning Committee and/or provided critical data to the HMPC for consideration. The public involvement elements of this Plan were reviewed by the HMPC. They were determined to have remained effective and were approved for use in the current Plan update process. #### HMPC members are listed in the following table: | Name | Juris diction/Dept | Title/Position | | |------------------|---|---|--| | Derek Brewer | Gordon County Tax
Assessor's Office | Deputy Chief Appraiser | | | Kelly Bumgardner | Calhoun City Schools | Career Technical Instruction
Coordinator | | | Tom Burgess | Gordon County Building & Planning | Director | | | Bill Byars | Georgia Northwestern
Technical College | Director of Safety | | | James D. Cochran | Georgia State Patrol – City of
Calhoun | State Trooper | | | Richard Cooper | Gordon County EMA | EMA Director (former) | | | Jason Davis | Georgia State Patrol –
Gordon County | State Trooper | | | Jeff DeFoor | City of Calhoun Electric Dept | Director of Electric Utilities | | | Vicky Edge | Georgia Forestry Commission | Ranger | | | Mike Evelti | Gordon County Schools | Director of Student Services | | | Larry Gilbert | Calhoun Police Dept | Major | | | Adam Greeson | Georgia Forestry Commission | Ranger | | | Matt Hayes | North Georgia EMC | Manager of Operations | | | Name | Juris diction/Dept | Title/Position | | |-----------------|---|--|--| | Barry Hice | Gordon County Public Works | Director | | | Bruce Manning | Gordon County Tax
Assessor's Office | Appraiser | | | Terry Mills | Calhoun Fire Dept | Deputy Chief | | | Garry Moss | Calhoun Police Dept | Chief of Police | | | Lenny Nesbitt | Calhoun Fire Dept | Fire Chief | | | Jonathan Parker | GNTC BLEA | GNTC Basic Law
Enforcement Academy Class
Coordinator | | | Keith Parker | GNTC | Maintenance Supervisor | | | James Pledger | Georgia Northwestern
Technical College | Director LEA | | | Doug Ralston | Gordon County Fire & Rescue | Fire Chief | | | Donna Reeve | Gordon County GIS | GIS Manager | | | Nathan Saylors | Gordon County Fire & Rescue | Training | | | Amanda Schutz | Calhoun City Schools | School Social Worker | | | Byron Sutton | Gordon County Fire & Rescue | Deputy Chief | | | Courtney Taylor | Gordon County EMA | EMA Director | | | Debbie Vance | Gordon County 911 | E-911 Director | | | Larry Vickery | City of Calhoun Utilities | General Manager | | | Paul Worley | City of Calhoun | City Clerk | | Various County and municipal departments, schools, and others participated in conversations with the EMA Director that directly contributed to the development of this Plan. Due to limited resources within the County, Cities, and Towns, attendance at HMPC meetings for some was not an option. Nevertheless, their direct input was utilized by the HMPC to develop this Plan. The Plan was posted on the county's website during the planning process. This was done to allow the general public, including other nearby communities, as well as other agencies to review and comment on the Plan utilizing the contact information provided on the website. ### 1.4 HRV summary/Mitigation goals Gordon County has experienced a number of hazard events throughout its history, most resulting in fairly localized damage. Flooding, tornados, winter storms, wildfire, severe thunderstorms, earthquakes, dam failure and hazardous materials to varying degrees represent known threats to Gordon County. The Gordon County HMPC used information gathered throughout this planning process to identify mitigation goals and objectives as well as some recommended mitigation actions. Each potential mitigation measure identifies an organization or agency responsible for initiating the necessary action, as well as potential resources, which may include grant programs and human resources. An estimated timeline is also provided for each mitigation action. ## 1.5 Multi-Jurisdictional Special Considerations The Cities of Calhoun, Fairmount, Plainville and Ranger, and the Town of Resaca were active participants and equal partners in the planning process as well as the previous planning process. As an active part of the HMPC, these jurisdictions contributed significantly to the identification of mitigation goals and objectives and potential mitigation measures contained within the HMP. ## **Participation in Mitigation Plan** | <u>Jurisdiction</u> | <u>2011 Plan</u> | <u>2016 Plan</u> | |---------------------|------------------|------------------| | Gordon County | ✓ | ✓ | | City of Calhoun | ✓ | ✓ | | City of Fairmount | ✓ | ✓ | | City of Plainville | ✓ | ✓ | | City of Ranger | ✓ | ✓ | | Town of Resaca | ✓ | ✓ | ## 1.6 Adoption, Implementation, Monitoring, Evaluation Upon completion of the Plan, it will be forwarded to GEMA for initial review. GEMA will then forward the Plan to FEMA for final review and approval. Once final FEMA approval has been received, Gordon County and the Cities of Calhoun, Fairmount, Plainville and Ranger, and the Town of Resaca will be responsible for initiating the appropriate courses of action related to this Plan. Actions taken may be in coordination with one another or may be pursued separately. The "Plan Update and Maintenance" section of this document details the formal process that will ensure that the Gordon County HMP remains an active and relevant document. The HMP maintenance process includes monitoring and evaluating the Plan annually, and producing a complete Plan revision every five years. Additionally, procedures will ensure public participation throughout the plan maintenance process. This Plan will be considered for integration into various existing plans and programs, including the Gordon County Comprehensive Plan at its next scheduled update. Mitigation actions within the HMP may be used by the County, Cities, and Towns as one of many tools to better protect the people and property of Gordon County and the Cities of Calhoun, Fairmount, Plainville and Ranger, and the Town of Resaca. Gordon County and the
Cities of Calhoun, Fairmount, Plainville and Ranger, and the Town of Resaca are each individually responsible for the processes necessary to formally adopt this Plan. ## **Adoption Status** | <u>Jurisdiction</u> | <u>Date of Adoption</u> | |---------------------|------------------------------| | Gordon County | Upon GEMA & FEMA
Approval | | City of Calhoun | Upon GEMA & FEMA
Approval | | City of Fairmount | Upon GEMA & FEMA
Approval | | City of Plainville | Upon GEMA & FEMA
Approval | | Town of Resaca | Upon GEMA & FEMA
Approval | | City of Ranger | Upon GEMA & FEMA | | Approval | |----------| ## 1.7 Review and Incorporation The HMPC recognized the need to integrate other plans, codes, regulations, procedures and programs into this Hazard Mitigation Plan (HMP). Gordon County did not have the opportunity to incorporate the original HMP's strategy into other planning mechanisms, but will now ensure that during the planning process for new and updated local planning documents such as a comprehensive plan or Local Emergency Operations Plan, the EMA Director will provide a copy of the HMP to the appropriate parties, so incorporation will be considered in future updates. All goals and strategies of new and updated local planning documents should be consistent with, and support the goals of, the HMP and not contribute to increased hazards in the affected jurisdiction(s). #### Record of Review | Existing planning mechanisms | Reviewed?
(Yes/No) | Method of use in Hazard
Mitigation Plan | |---|-----------------------|---| | Comprehensive Plan (multi-
jurisdictional) | Yes | Development trends | | Local Emergency Operations Plan | Yes | Identifying hazards;
Assessing vulnerabilities | | Storm Water Management / Flood
Damage Protection Ordinance | Yes | Mitigation strategies | | Building and Zoning Codes and
Ordinances | Yes | Development trends; Future growth | | Mutual Aid Agreements | Yes | Assessing vulnerabilities | | State Hazard Mitigation Plan | Yes | Risk assessment | | Land Use Maps | Yes | Assessing vulnerabilities;
Development trends; Future growth | | Critical Facilities Maps | Yes | Locations | | Community Wildfire Protection Plan | Yes | Mitigation strategies | As set forth in the plan maintenance section of this plan (Section 6.4), the Hazard Mitigation Planning Committee will meet during the plan approval anniversary date of every year to complete a review of the Hazard Mitigation Plan. It is during this review process that the mitigation strategy and other information contained within the Hazard Mitigation Plan are considered for incorporation into other planning mechanisms as appropriate. Opportunities to integrate the requirements of this HMP into other local planning mechanisms will continue to be identified through future meetings of the HMPC on an annual basis. The primary means for integrating mitigation strategies into other local planning mechanisms will be through the revision, update and implementation of each jurisdiction's individual action plans that require specific planning and administrative tasks (e.g., plan amendments and ordinance revisions). During the planning process for new and updated local planning documents such as a comprehensive plan or Local Emergency Operations Plan, the EMA Director will provide a copy of the HMP to the appropriate parties. It will be recommended that all goals and strategies of new and updated local planning documents be consistent with, and support the goals of, the HMP and will not contribute to increased hazards in the affected jurisdiction(s). Although it is recognized that there are many benefits to integrating components of this plan into other local planning mechanisms, and that components are actively integrated into other planning mechanisms when appropriate, the development and maintenance of this stand-alone HMP is deemed by the committee to be the most effective method to ensure implementation of local hazard mitigation actions at this time. Therefore, the review and incorporation efforts made in this update and the last, which consisted of a simple review of the documents listed in the chart above by various members of the HMPC, are considered successful by the HMPC and will likely be utilized in future updates. The County's EMA is committed to incorporating hazard mitigation planning into its Local Emergency Operations Plan and other public emergency management activities. As the EMA Director becomes aware of updates to other County or City plans, codes, regulations, procedures and programs, the Director will continue to look for opportunities to include hazard mitigation into these mechanisms. ## 1.8 Scope of Updates Changes have been made to the HMP in this updated version. These changes are summarized in the following table. | Chapter or Section | Chapter or Section Description | Changes this Update | | | |--------------------|---|---------------------------------|--|--| | 1.2 | Organization of the Plan | Descriptions | | | | 1.3 | Participants in Planning Process | Data | | | | 1.5 | Multi-Jurisdictional Special
Considerations | Data | | | | 1.6 | Adoption, Implementation,
Monitoring, Evaluation | Descriptions, Data | | | | 1.7 | Review and Incorporation | Descriptions, Data | | | | 1.8 | Scope of Updates | Descriptions, Data | | | | 1.9 | Brief County Overview | Descriptions, Data | | | | 2 | Introduction | Descriptions, Data | | | | 2.1 | Severe Thunderstorm | Descriptions, Data, Visual Aids | | | | 2.2 | Winter Storm | Descriptions, Data, Visual Aids | | | | 2.3 | Flooding | Descriptions, Data, Visual Aids | | | | 2.4 | Tornado | Descriptions, Data, Visual Aids | | | | 2.5 | Wildfire | Descriptions, Data, Visual Aids | | | | 2.6 | Drought | Descriptions, Data, Visual Aids | | | | 2.7 | Earthquake | Descriptions, Data, Visual Aids | | | | 3.1 | Hazardous Materials Rel. | Descriptions, Data, Visual Aids | | | | 3.2 | Dam Failure | Descriptions, Data, Visual Aids | | | | 4 | Land Use & Dev. Trends | Descriptions, Data, Visual Aids | | | | 5 | HM Goals Obj. & Actions | Descriptions, Data | | | | Chapter or Section | Chapter or Section Description | Changes this Update | | |--------------------|--|---------------------------------|--| | 6.1 | Action Plan Implementation | Descriptions | | | 6.2 | Evaluation | Descriptions | | | 6.3 | Multi-Jurisdictional Strategy & Considerations | Descriptions | | | 6.4 | Plan Update & Maintenance | Descriptions, Data | | | 7.2 | References | Data | | | App. A | Critical Facilities Database | Data, Visual Aids | | | App. B | Hazard History Database | Data | | | App. C | Hazard Frequency Table | Data | | | App. D | Other Planning Documents | Descriptions, Data, Visual Aids | | ## 1.9 Brief County Overview **County Formed**: February 13, 1850 County Seat: Calhoun Incorporated Cities/Towns: Calhoun, Fairmount, Plainville, Ranger, Resaca ### **U.S.** Census Bureau Estimated Population: Gordon County: 56,574 (2015) City of Calhoun: 16,309 (2015) City of Fairmount: 736 (2015) City of Plainville: 321 (2015) City of Ranger: 134 (2015) Town of Resaca: 775 (2015) **Total Area:** 355.2 square miles Gordon County was created in 1850 from parts of Floyd and Bartow counties. The 93rd county formed in the state was named after William Washington Gordon, who was president of what was then the Central Railroad and Banking Company and later became the Central of Georgia Railroad. Calhoun was named for Senator John Calhoun. Originally, the City was called Dawsonville. The City of Calhoun was virtually wiped out by Sherman's troops a little more than a decade after being incorporated in 1852, but was rebuilt after the war. Gordon County is the home of New Echota, which was once the capital of the Cherokee Nation. It was the birthplace of the written Cherokee language and the newspaper, *The Cherokee Phoenix*. The county has numerous outdoor recreational opportunities. The Chattahoochee National Forest makes up a large part of the western part of the county. The Coosawattee and Conasauga rivers join to form the Oostanaula River, and there is also the Salacoa Creek Park, a 343-acre park with a 126-acre lake. Gordon County is rich in natural and historic resources. From its beginnings in 1850 to today, Gordon County offers its current and new residents many opportunities for work and play. Gordon County is strategically located on I-75 in Northwest Georgia, 45 minutes from both Atlanta and Chattanooga. This enviable location has attracted and continues to attract commercial and industrial enterprises such as major carpet and floor covering manufacturers, food processors, heavy machinery assembly companies, and distribution firms. Gordon County and its environs possesses a vast array of quality-of-life resources including civil war historic sites, state parks, quality health care, excellent public and higher educational opportunities, a cultural arts center, a regional outlet mall, and the nearby fast pace urban life of Georgia's capital city of Atlanta. Gordon County has a five member Board of Commissioners elected by the voters through at-large elections for four year staggered terms to represent the residents of the unincorporated area of the county. The Chairman and Vice Chairman are selected among the Board members for two year terms. The County also has six other constitutional officers elected by the voters through at-large elections for four year terms. Those officers are the Sheriff, Tax Commissioner, Clerk of Superior Court, Judge of the Probate Court, Judge of the Magistrate Court, and the Coroner. The Board of Commissioners appoints a full-time County Administrator to supervise the day-to-day operations of the County. The City of Calhoun has a five member City
Council elected by the voters through atlarge elections for four year staggered terms to represent the residents of the City. The City of Fairmount has a five member City Council elected by the voters through atlarge elections for four year staggered terms to represent the residents of the City. The City of Plainville has a five member City Council elected by the voters through atlarge elections for four year staggered terms to represent the residents of the City. The City of Ranger has a five member City Council elected by the voters through at-large elections for four year staggered terms to represent the residents of the City. The Town of Resaca has a four member Town Council elected by the voters through atlarge elections for four year staggered terms to represent the residents of the Town. ## <u>Chapter 2</u> <u>Local Natural Hazard, Risk and Vulnerability (HRV)</u> <u>Summary</u> The Gordon County Hazard Mitigation Planning Committee (HMPC) identified eight natural hazards the County is most vulnerable to based upon available data including scientific evidence, known past events, and future probability estimates. As a result of this planning process, which included an analysis of the risks associated with probable frequency and impact of each hazard, the HMPC determined that each of these natural hazards pose a threat significant enough to address within this Plan. These include tornados, severe thunderstorms (including hail & lightning), flooding, winter storms, wildfire, drought, earthquakes, and landslides. For this plan update, the HMPC reviewed the natural hazards listed in the 2014 Georgia Hazard Mitigation Strategy Standard & Enhanced Plan to assess the applicability of these hazards to Gordon County and the Cities of Calhoun, Fairmount, Plainville and Ranger, and the Town of Resaca (See Table 2.1). Each of these natural hazards is addressed in this chapter of the Plan. An explanation and results of the vulnerability assessment are found in Tables 2-1 and 2-2. The HMPC also discussed how changes in the climate may in some ways impact the County, Cities and Towns. If this is the case, at this point there is insufficient data to calculate how and to what degree such changes may impact Gordon County in the future. However, it seems likely that the impact of any changes in climate would be manifested in the form of the same hazards currently addressed within this Plan, even though frequency, probability and severity of those hazards might change. <u>Table 2.1 – Hazards Terminology Differences</u> | Hazards Identified in
2011 Georgia State
Plan | Equivalent/Associated
Hazards Identified in the
2015 Gordon County Plan | Difference | | |---|---|---|--| | Tornadoes | Tornados | Grammatical only. | | | Wind | Severe Thunderstorms | HMPC views as an associated hazard. | | | Severe Weather | Severe Thunderstorms | Difference in terminology. | | | Hailstorm | Severe Thunderstorms | HMPC views as an associated hazard. | | | Lightning | Severe Thunderstorms | HMPC views as an associated hazard. | | | Tropical Cyclonic Events | Severe Thunderstorms
Flooding | Due to the County's inland location, not directly viewed as a threat. Tropical weather has limited effects within the County and is generally considered in terms of Severe Thunderstorms and Flooding, associated hazards. | | | Inland Flooding | Flooding | Difference in terminology. | | | Earthquake | Earthquake | None | | | Severe Winter Storms | Winter Storms | Difference in terminology. | | | Wildfire | Wildfire | None | | | Drought | Drought | None | | <u>Table 2.2 – Vulnerability Assessment - Natural Hazards</u> (see Keys below) | HAZARD | Gordon | Calhoun | Fairmount | Plainville | Ranger | Resaca | |-------------------------|-------------|---------------|----------------|------------|----------|----------| | Severe Thu | nderstorms | s (includes l | lightning & ha | ail) | | | | Frequency | Н | Н | Н | H | Н | Н | | Severity | Н | Н | Н | Н | Н | Н | | Probability | EX | Н | Н | Н | Н | EX | | Tornados | 2.1 | | | | | | | Frequency | Н | M | M | M | M | M | | Severity | EX | Н | Н | Н | Н | Н | | Probability | Н | M | M | M | M | M | | Flooding | | | | | | | | Frequency | M | Н | Н | M | L | Н | | Severity | H | Н | H | H | L | EX | | Probability | M | Н | H | M | L | Н | | Winter Stor | | | | | | | | Frequency | M | M | M | M | M | M | | Severity | H | H | Н | Н | M | M | | Probability | M | M | M | M | M | M | | Drought | 3.5 | 3.7 | 3.5 | 3.5 | 3.5 | ** | | Frequency | M | M | M | M | M | Н | | Severity | H | H | H | H | H | Н | | Probability | M | M | M | M | M | Н | | Wildfire | M | L | M | M | M | M | | Frequency
Severity | M
H | L
L | H | H | M | M | | Probability | M | L
L | M | M | M | L | | Earthquake | | L | 1V1 | 1V1 | IVI | L | | Frequency | L | L | M | M | L | VL | | Severity | M | M | M | M | L | L | | Probability | L | L | M | M | L | VL | | Dam Failur | | | 141 | 111 | L | V E | | Frequency | L | L | L | L | L | L | | Severity | M | L | M | L | L | Н | | Probability | L | L | L | L | L | M | | Hazardous | Materials 1 | Release | | | | | | Frequency | H | M | M | M | M | VL | | Severity | Н | Н | Н | Н | Н | M | | Probability | Н | M | M | M | M | VL | | Landslide | | | | | | | | Frequency | NA | NA | NA | NA | NA | NA | | Severity | NA | NA | NA | NA | NA | NA | | Probability | NA | NA | NA . | NA | NA | NA | | | | | anes & Tropi | | NT A | NT A | | Frequency | NA
NA | NA
NA | NA
NA | NA
NA | NA
NA | NA
NA | | Severity | NA
NA | NA
NA | NA
NA | NA
NA | NA
NA | NA
NA | | Probability Coastal Flo | NA
oding | NA | NA | NA | NA | NA | | Frequency | oaing
NA | NA | NA | NA | NA | NA | | Severity | NA
NA | NA
NA | NA
NA | NA
NA | NA
NA | NA
NA | | Probability | NA
NA | NA
NA | NA
NA | NA
NA | NA
NA | NA
NA | | Sinkhole | 1 1/1 | 11/1 | 11/1 | 11/1 | 11/1 | 11/1 | | Frequency | NA | NA | NA | NA | NA | NA | | Severity | NA | NA | NA | NA | NA | NA | | Probability | NA | NA | NA | NA | NA | NA | #### **Key for Table 2.2 – Vulnerability Assessment Frequency and Probability Definitions** NA = Not applicable; not a hazard to the jurisdiction VL = Very low risk/occurrence L = Low risk; little damage potential (for example, minor damage to less than 5% of the jurisdiction) M = Medium risk; moderate damage potential (for example, causing partial damage to 5-15% of the jurisdiction, infrequent occurrence) H = High risk; significant risk/major damage potential (for example, destructive, damage to more than 15% of the jurisdiction, regular occurrence) EX = Extensive risk/probability/impact #### **Key for Table 2.2 – Vulnerability Assessment Severity Definitions** | | Low | <u>Medium</u> | <u>High</u> | Extensive | |--------------------------------------|------------------------------|---------------|-------------|------------------| | Tropical Cyclonic Events | (See Wind & Inland Flooding) | | | | | | | | | | | Wind – Wind Speed | 38 MPH | 39–50 MPH | 50-73 MPH | 73–91 MPH | | Severe Thunderstorm | (See Wind & Inland Flooding) | | | | | Tornado - Magnitude | < EF3 | EF3 | EF4 | EF5 | | Inland Flooding - Water depth | 3" or less | 3 – 8" | 8-12" | 12"+ | | Severe Winter Storms – Ice/
Sleet | ½" or less | 1/2 – 4" | 4-7" | 7"+ | | Severe Winter Storms - Snow | 1" or less | 1-6" | 6-12" | 12"+ | | Drought – Duration | 1 year | 1-2 years | 2-5 years | 5+ years | | Wildfire - # of Acres | <50 | 50-110 | 110-200 | 200+ | | Earthquake - Magnitude | 1-2 | 3 | 4 | 5+ | #### 2.1 Tornados **A.** Hazard Identification – A tornado is a dark, funnel-shaped cloud containing violently rotating air that develops below a heavy cumulonimbus cloud mass and extends toward the earth. The funnel twists about, rises and falls, and where it reaches the earth causes great destruction. The diameter of a tornado varies from a few feet to a mile; the rotating winds attain velocities of 200 to 300 mph, and the updraft at the center may reach 200 mph. A tornado is usually accompanied by thunder, lightning, heavy rain, and a loud "freight train" noise. In comparison with a hurricane, a tornado covers a much smaller area but can be just as violent and destructive. The atmospheric conditions required for the formation of a tornado include great thermal instability, high humidity, and the convergence of warm, moist air at low levels with cooler, drier air aloft. A tornado travels in a generally northeasterly direction with a speed of 20 to 40 mph. The length of a tornado's path along the ground varies from less than one mile to several hundred. The Fujita Scale was the standard scale in the United States for rating the severity of a tornado as measured by the damage it causes from 1971 to 2007 (see table below). | The Fujita Scale of Tornado Intensity | | | | | |---------------------------------------|------------------------|----------------|---|--| | F-Scale
Number | Intensity
Phrase | Wind
Speed | Type of Damage Done | | | F0 | Gale
tornado | 40-72 mph | Some damage to chimneys; breaks branches off trees; pushes over shallow-rooted trees; damages sign boards. | | | F1 | Moderate
tornado | 73-112 mph | The lower limit is the beginning of hurricane wind speed; peels surface off roofs; mobile homes pushed off foundations or overturned; moving autos pushed off the roads; attached garages may
be destroyed. | | | F2 | Significant
tornado | 113-157
mph | Considerable damage. Roofs torn off frame houses; mobile homes demolished; boxcars pushed over; large trees snapped or uprooted; light object missiles generated. | | | F3 | Severe
tornado | 158-206
mph | Roof and some walls torn off well constructed houses; trains overturned; most trees in forest uprooted | | | F4 | Devastating tornado | 207-260
mph | Well-constructed houses leveled; structures with weak foundations blown off some distance; cars thrown and large missiles generated. | | | F5 | Incredible
tornado | 261-318
mph | Strong frame houses lifted off foundations and carried considerable distances to disintegrate; automobile sized missiles fly through the air in excess of 100 meters; trees debarked; steel reinforced concrete structures badly damaged. | | The Enhanced Fujita (EF) Scale for Tornado Damage is an update to the original Fujita Scale by a team of meteorologists and wind engineers that was implemented in the United States in 2007. The EF Scale is still a set of wind estimates (not measurements) based on damage. It uses three-second gusts estimated at the point of damage based on a judgment of 8 levels of damage to 28 indicators. These estimates vary with height and exposure. The three-second gust is not the same wind as in standard surface observations. Standard measurements are taken by weather stations in open exposures, using a directly measured, "one-minute mile" speed. ## Levels of the Enhanced Fujita scale Grade, damage and windspeeds Source: Fema The NOAA map below represents the average annual number of NOAA Storm Prediction Center tornado watches (per county) from 1993 through 2012. This is the latest version of this NOAA Map. Gordon County averaged eight per year during this time period. Although this 20 year time period does not match up exactly with the timelines reviewed within this Plan, the map is a valuable visual aid by providing a nationwide perspective on potential tornado activity. The following NOAA maps represent the United States severe report database (tornadoes 1950-2014) converted into shapefile (.shp) file format along with a Geographic Information System (GIS) database. In other words, these maps show the estimated paths and intensities of recorded tornados over this time period. Although this 64-year time period does not match up exactly with the 50-year timeline reviewed within this Plan, the map remains a valuable visual aid by providing a regional perspective on historical tornado activity. Close-up of Gordon County from the map above: Tornados are considered to be the most unpredictable and destructive of weather events in Georgia, even though they are not the most frequently occurring natural hazard within Gordon County. Tornado season in Georgia is ordinarily said to run from March through August, with the peak activity being in April. However, tornados can strike at any time of the year when certain atmospheric conditions are met, including during the coldest months of the year. See the National Weather Service graph below, which covers the NWS Peachtree City Area of Georgia. **B. Hazard Profile** – All areas within Gordon County are vulnerable to the threat of a tornado. There is simply no method to determine exactly when or where a tornado will occur. The Gordon County Hazard Mitigation Planning Committee (HMPC) reviewed historical data from the Georgia Tornado Database, the National Climatic Data Center, and various online resources in researching the past effects of tornados within the County. With most of the County's recorded tornado events, only basic information was available. However, dozens of tornado watches have been recorded during this period, and certainly some tornados go undetected or unreported. Therefore, any conclusions reached based upon available information on tornados within Gordon County should be treated as the minimal possible threat. In the Peachtree City County Warning Area (CWA), which includes Gordon County, the average number of tornado days per year is six, according to the National Weather Service. While tornadoes have been reported in all months of the year, most occur in the months of March, April, and May. During this "tornado season" the most likely time of occurrence is from mid-afternoon through early evening. Tornado intensities of EF2 or greater are involved in 37% of the events when the data is broken down into a county-by-county basis. These strong tornados are more likely to occur during the month of April than in any other month. (National Climatic Data Center) NCDC and other records show that nine tornados occurred within the County over the past fifty years, which equates to an 18% annual frequency of reported events. The frequency of reported events has increased about two-fold over the 50-year period. It would appear that tornado activity has increased over time within the County. This may be the case or it may simply be that record keeping and technology have improved significantly over the course of time, reflecting the higher numbers. It may also be a combination of these two factors. The following chart provides annual frequency of reported events over the past five, ten, twenty, and fifty-year periods. The most recent five-year period, covering the span of time since the last update to this Plan, is highlighted in gold. | Gordon County - Tornado Frequency | | | | | | |-----------------------------------|-------------|-------------|-------------|-------------|--| | (based on Reported Events) | | | | | | | Time Period | 5yrs | 10yrs | 20yrs | 50yrs | | | | (2011-2016) | (2006-2016) | (1996-2016) | (1966-2016) | | | Number of Reported Events | 2 | 3 | 4 | 9 | | | Frequency Average per Year | 0.4 | 0.3 | 0.2 | 0.18 | | | Frequency Percent per Year | 40% | 30% | 20% | 18% | | The National Weather Service statewide map on the following page shows the ten Gordon County tornados on record from 1950 to 2012. However, this Hazard Mitigation Plan covers the past 50 years (1966 to 2016), which includes only nine reported events. See the following chart. | Gordon County - Recorded tornados 1966 to present | | | | | |---|---------|--------------|--|--| | Date | Time | Intensity | | | | 3/16/1973 | 1:37pm | F2 | | | | 4/3/1974 | 4:40pm | F4 | | | | 3/30/1977 | 10:00am | F2 | | | | 4/5/1985 | 7:15pm | F1 | | | | 2/21/1993 | 8:20pm | F0 | | | | 5/1/2002 | 3:15pm | F1 | | | | 4/10/2009 | 4:30pm | Unclassified | | | | 12/22/2011 | 5:07pm | EF3 | | | | 1/30/2013 | 11:21am | EF3 | | | The most recent version of this National Weather Service map below covers the period from 1950-2012. It demonstrates historic tornado activity of the County in relationship to surrounding counties, and the entire state. #### January 30, 2013 EF-3 Tornado The National Weather Service surveyed the damage caused by a supercell thunderstorm that tracked across northwest Bartow County and central Gordon County from approximately 11:15am to 11:55am on January 30, 2013. In Gordon County 268 home structures were impacted. Of these, 30 were completely destroyed, 110 had major damage, and another 70 had minor damage. Out of the 268 homes, 202 were single family homes and 66 were mobile homes. The map below shows the entire track of the 2013 EF-3 tornado from southwest of Adairsville northeastward through Gordon county to the Gordon/Murray County line. Damage to homes east of Calhoun, GA from the January 30, 2013 EF-3 tornado is shown below. Ironically, two homes near Boone Ford Rd and Beason Rd, immediately adjacent to this neighborhood, were completely destroyed by an EF-3 tornado on December 22, 2011. #### December 22, 2011 EF-3 Tornado A National Weather Service assessment team investigated damage associated with thunderstorms that moved across Floyd and Gordon Counties during the evening of December 22, 2011. It was determined that an EF-0 tornado began in far northeast Floyd county near Highway 140 about 2.75 miles north of Shannon and strengthened to EF-1 intensity along Emily Lane just east of Plainville in southwest Gordon county where several homes were damaged from falling trees. The tornado then strengthened to EF-3 intensity, with maximum winds of 135 mph, at the corner of Boone Ford road and Beason road near Calhoun, where a home was completely destroyed. Shortly after this, the tornado weakened to an EF-0 and dissipated. Preliminary damage reports estimate that several homes were damaged. One was completely destroyed and numerous trees downed. Map of 2011 tornado path Gordon County damage from 2011 tornado (next 2 photos) Home destruction east of Calhoun from 2011 tornado (next 3 photos) **C. Assets Exposed to Hazard** - Tornados are unpredictable and are indiscriminate as to when or where they strike. All public and private property including critical facilities are susceptible to tornados since this hazard is not spatially defined. The map below identifies critical facilities located within the hazard area, which in the case of tornados includes all areas within the County, Cities, and Towns. # **D. Estimate of Potential Losses** – For loss estimate information, please refer to the Critical Facilities Database (Appendix A). Gordon County is located in wind zone IV, which is associated with 250-mph design wind speeds as determined by the American Society of Civil Engineers (ASCE). Construction must adhere to the Georgia State Minimum Standard Codes (Uniform Codes Act). The minimum standards established by these codes provide reasonable protection from most natural hazards. See the following 2005 ASCE wind zone map and chart. | Wind Zones | Areas Affected | |---
--| | Zone I (130 mph) | All of Washington, Oregon, California, Idaho, Utah, and Arizona. Western parts of Montana, Wyoming, Colorado and New Mexico. Most of Alaska except the east and south coastlines. | | Zone II (160 mph) | Eastern parts of Montana, Wyoming, Colorado, New Mexico. Most of North Dakota. Northern parts of Minnesota, Wisconsin and Michigan.Western parts of South Dakota, Nebraska and Texas. All New England States. Eastern parts of New York, Pennsylvania, Maryland, and Virginia. Washington, DC. | | one II (160 mph) one III (200 mph) one IV (250 mph) | Areas of Minnesota, South Dakota, Nebraska, Colorado, Kansas, Oklahoma, Texas, Louisiana, Mississippi, Alabama, Georgia, Tennessee, Kentucky, Pennsylvania, New York, Michigan, and Wisconsin. Most or all of Florida, Georgia, South Carolina, North Carolina, Virginia, West Virginia. All of American Somoa, Puerto Rico, and Virgin Islands. | | Zone IV (250 mph) | Mid US including all of Iowa, Missouri, Arkansas, Illinois, Indiana, and Ohio and parts of adjoining states of Minnesota, South Dakota, Nebraska, Kansas, Oklahoma, Texas, Louisiana, Mississippi, Alabama, Georgia, Tennessee, Kentucky, Pennsylvania, Michigan, and Wisconsin. Guam. | | Special Wind Region | Isolated areas in the following states: Washington, Oregon, California, Idaho, Utah, Arizona, Montana, Wyoming, Colorado, New Mexico. The borders between Vermont and New Hampshire; between NewYork, Massachusetts and Connecticut; between Tennessee and North Carolina. | | Hurricane Susceptible Region | Southern US coastline from Gulf
Coast of Texas eastward to
include entire state of Florida.
East Coastline from Maine to
Florida, including all of
Massachusetts, Connecticut,
Rhode Island, Delaware, and
Washington DC. All of Hawaii,
Guam, American Samoa, Puerto
Rico and Virgin Islands. | The following map from USTornadoes.com was derived from National Weather Service data and shows the impact of recorded tornadoes from 1991 to 2015 by State. - **E. Multi-Jurisdictional Concerns** Gordon County and the Cities of Calhoun, Fairmount, Plainville and Ranger, and the Town of Resaca have a design wind speed of 250 mph as determined by the American Society of Civil Engineers (ASCE). Since no part of the County is immune from tornados, any mitigation steps taken related to tornados will be undertaken on a countywide basis, including the Cities of Calhoun, Fairmount, Plainville and Ranger, and the Town of Resaca. - **F. Hazard Summary** Based on its history, Gordon County has a high exposure to potential damage from tornados. Should a tornado strike residential areas or critical facilities, significant damage and loss of life could occur. Due to the destructive power of tornados it is essential that the mitigation measures identified in this plan receive full consideration. Specific mitigation recommendations related to tornados are identified in *Chapter 5*. # 2.2 Severe Thunderstorms (including Hail & Lightning) **A. Hazard Identification** – A Severe Thunderstorm is defined as a thunderstorm producing wind at or above 58 mph and/or hail one inch in diameter or larger. This threshold is met by approximately 10% of all thunderstorms. These storms can strike any time of year, but similar to tornados, are most frequent in the spring and summer months. They are nature's way of providing badly needed rainfall, dispersing excessive atmospheric heat buildup and cleansing the air of harmful pollutants. Not only can severe thunderstorms produce injury and damage from violent straight-line winds, hail, and lightning, but these storms can produce tornados very rapidly and without warning. Note: For the purposes of this Plan, severe thunderstorms that result from tropical storms and hurricanes are included in this section. The most damaging phenomena associated with thunderstorms, excluding tornado activity, are thunderstorm winds. These winds are generally short in duration involving straight-line winds and/or gusts in excess of 50 mph. However, these winds can gust to more than 100 miles an hour, overturning trailers, unroofing homes, and toppling trees and power lines. Such winds tend to affect areas of the County with significant tree stands, as well as areas with exposed property, infrastructure, and above-ground utilities. Resulting damage often includes power outages, transportation and economic disruptions, and significant property damage. Severe thunderstorms can ultimately leave a population with injuries and loss of life. Thunderstorms produce two types of wind. Tornados are characterized by rotational winds. The other more predominant winds from a thunderstorm, downbursts, are small areas of rapidly descending air beneath a thunderstorm that strike the ground producing isolated areas of significant damage. Every thunderstorm produces a downburst. The typical downburst consists of only a 25 mph gusty breeze, accompanied by a temperature drop of as much as 20 degrees within a few minutes. However, severe downburst winds can reach from 58 to 100 mph, or more, significantly increasing the potential for damage to structures. Downbursts develop quickly with little or no advance warning and come from thunderstorms whose radar signatures appear non-severe. There is no sure method of detecting these events, but atmospheric conditions have been identified which favor the development of downbursts. Severe downburst winds have been measured in excess of 120 miles per hour, or the equivalent of an F2 tornado, on the Fujita Scale. Such winds have the potential to produce both a loud "roaring" sound and the widespread damage typical of a tornado. This is why downbursts are often mistaken for tornados. Hail can also be a destructive aspect of severe thunderstorms. Hail causes more monetary loss than any other type of thunderstorm-spawned severe weather. Annually, the United States suffers about one billion dollars in crop damage from hail. Storms that produce hailstones only the size of a dime can produce dents in the tops of vehicles, damage roofs, break windows and cause significant injury or even death. Unfortunately hail is often much larger than a dime and can fall at speeds in excess of 100 mph. Hailstones are created when strong rising currents of air called updrafts carry water droplets high into the upper reaches of thunderstorms where they freeze. These frozen water droplets fall back toward the earth in downdrafts. In their descent, these frozen droplets bump into and coalesce with unfrozen water droplets and are then carried back up high within the storm where they refreeze into larger frozen drops. This cycle may repeat itself several times until the frozen water droplets become so large and heavy that the updraft can no longer support their weight. Eventually, the frozen water droplets fall back to earth as hailstones. Finally, one of the most frightening aspects of thunderstorms is lightning. Lightning kills nearly one hundred people every year in the United States and injures hundreds of others. A possible contributing reason for this is that lightning victims frequently are struck before or just after the occurrence of precipitation at their location. Many people apparently feel safe from lightning when they are not experiencing rain. Lightning tends to travel the path of least resistance and often seeks out tall or metal objects. With lightning however, it's all relative. A 'tall' object can be an office tower, a home, or a child standing on a soccer field. Lightning can and does strike just about any object in its path. Some of the most dangerous and intense lightning may occur with severe thunderstorms during the summer months, when outdoor activities are at their peak. **B. Hazard Profile** – Severe thunderstorms, hail, and lightning are serious threats to the residents of Gordon County. Over the course of a year, the County experiences dozens of thunderstorms, with about one in ten being severe. Severe thunderstorms occur more frequently than any other natural hazard event within Gordon County. Most of these storms include lightning and/or hail. There have been dozens of severe thunderstorm events within Gordon County over the past fifty years according to available documentation. It is very likely this is a low estimate due to poor record keeping in decades past. It is clear from information collected that more accurate record keeping related to severe thunderstorms developed over the past two decades, with even more detailed information available for the past ten years. Most of the available information relating to severe thunderstorms, hail, and lightning occurrences within Gordon County fails to describe damage estimates in great detail. However, with each thunderstorm event it is likely there are unreported costs related to infrastructure and utilities repair and public safety costs, at a minimum. Severe thunderstorms have occurred in all parts of the day and night within Gordon County. They have also taken place in every single month of the year. The two tables below contain information on two of the most costly hail events on record for Gordon County. The first occurred May 20, 2008 and had estimated property damage at \$1 million. The second occurred on April 4, 2011 and had estimated property damage at \$1.58 million. | Event | Hail | |-----------------------------
--| | Magnitude | 2.75 in. | | State | GEORGIA | | County/Area | GORDON | | WFO | FFC | | Report
Source | Public | | NCEI Data
Source | CSV | | Begin Date | 2008-05-20 16:25:00.0 EST-5 | | Begin
Location | 0N OOSTANAULA | | Begin
Lat/Lon | 34.48/-85.02 | | End Date | 2008-05-20 16:39:00.0 EST-5 | | End Location | 7S CALHOUN | | End Lat/Lon | 34.3787/-84.93 | | Deaths
Direct/Indirect | 0/0 (fatality details below, when available) | | Injuries
Direct/Indirect | 0/0 | | Property
Damage | 1.00M | | Crop
Damage | 0.00K | | Episode
Narrative | An active and very unstable northwest flow continued across the southeast United States as the polar vortex remained very strong in the northeast United States. A disturbance rotated around the back side of the upper low into the southeast United States during the afternoon and evening. Multiple complexes of severe thunderstorms developed across north and central Georgia during the mid to later afternoon as a result and moved southeast during the evening hours. Large hall was the primary severe weather element observed during this outbreak, however an EF2 tornado developed in Cherokee county and caused extensive damage to hundreds of homes. This was the 45th tornado of the spring season for north and central Georgia. | | Event
Narrative | The public reported baseball-sized hail in Oostanaula, half-dollar-sized hail southwest of Calhoun, and quarter-sized hail near the Bartow county line about six miles south of Calhoun. Hail covered the ground up to two inches deep south of Calhoun. The public estimated wind gusts at 60 mph near the Bartow county line, but other than a few tree limbs, no other damage was reported. | | Event | Hail | |-----------------------------|--| | Magnitude | 2.75 in. | | State | GEORGIA | | County/Area | GORDON | | WFO | FFC | | Report
Source | Amateur Radio | | NCEI Data
Source | CSV | | Begin Date | 2011-04-04 20:09:00.0 EST-5 | | Begin
Location | ON RESACA | | Begin
Lat/Lon | 34.58/-84.93 | | End Date | 2011-04-04 20:22:00.0 EST-5 | | End Location | ON NICKLESVILLE | | End Lat/Lon | 34.6/-84.87 | | Deaths
Direct/Indirect | 0/0 (fatality details below, when available) | | Injuries
Direct/Indirect | 0/0 | | Property
Damage | 1.58M | | Crop
Damage | 0.00K | | Episode
Narrative | An extremely progressive and highly kinematic upper flow remained in place across the U.S. A deep, full-latitude negatively tilted trough and associated strong Pacific cold front swept through the eastern U.S. April 4th into April 5th. An intense northeast to southwest oriented squall line of thunderstorms accompanied this front. Wind gusts of 60 to 70 mph were common along this line of thunderstorms as it traversed the entire Peachtree City (WFO FFC), Georgia Weather Forecast county warning area. Nearly every county received at least one severe thunderstorm warning during this event and nearly every county experienced extensive wind damage from these thunderstorms. Two brief EF0 tornadoes also occurred with this event in Gilmer county of north central Georgia. Downed trees on homes and vehicles also caused 7 fatalities during this event, the most in any single weather event since the catastrophic floods of late September 2009. Even several hours after the storms had passed, at least 50,000 residents of north and central Georgia remained without power. | | Event
Narrative | An amateur radio operator relayed a report of baseball-sized hail between Resaca and Nickelsville. As the storm first intensified to the west near Resaca, it initially produced penny-sized hail. | The table below contains information on perhaps the most costly thunderstorm wind events on record for Gordon County. The event occurred May 1, 2002 and had estimated property damage at \$11.65 million. | Event | Thunderstorm Wind | |-----------------------------|--| | Magnitude | 87 kts. | | State | GEORGIA | | County/Area | GORDON | | WFO | FFC | | Report
Source | NWS STORM SURVEY | | NCEI Data
Source | PDS | | Begin Date | 2002-05-01 03:00:00.0 EST | | Begin
Lat/Lon | 34.50/-84.83 | | End Date | 2002-05-01 03:30:00.0 EST | | End Location | COUNTYWIDE | | End Lat/Lon | 34.50/-84.83 | | Deaths
Direct/Indirect | 0/0 (fatality details below, when available) | | Injuries
Direct/Indirect | 0/0 | | Property
Damage | 11.65M | | Crop
Damage | 50K | | Event
Narrative | A National Weather Service disaster survey team observed that a thunderstorm macroburst, or large area of estimated 80 to 100 mph straight line winds traversed much of the county, but hit the Calhoun area particularly hard. The thunderstorm macroburst entered the northwest part of the county northwest of Sugar Valley, and then traveled southeast through the county within an approximately 30 minute period of time. As this macroburst traveled through the Calhoun area, a small, two-segmented F0 to weak F1 tornado touched down, first just southwest of Calhoun and then again just east of Calhoun, inflicting some of the worst damage in the county. Damage across the county was widespread and extensive and as such the area was declared in a state of emergency by the governor. Literally thousands of trees, dozens of which were 2 feet or more in diameter, and hundreds of power lines and telephone poles were either blown down or brought down by large trees. Damage surveys and insurance claims indicated that well over 300 structures were either damaged or destroyed, including 269 homes and 48 commercial structures. Numerous cars were also either damaged or destroyed by down trees and debris, including six classic cars valued at \$100,000. In one case, the damage to a large carpet dyeing facility was described as if a missile had hit the facility. Some of the more significant damaged structures and businesses included a large dyeing plant in Calhoun, two schools, one an elementary and the other a high school in Calhoun, a church, a grocery store, two barns at a large cow farm, and several businesses such as a pet store, a barbershop, a tanning salon, a dental office, insurance company office, and a computer store. In
addition, 50,000 chickens were destroyed on a chicken farm when the structure collapsed during the storm. While miraculously, no injuries or deaths were reported amidst all of this damage, at least two instances were reported of trees crashing through homes and landing just inches away from individuals sleeping | The National Lightning Detection Network Map below shows lightning flash density by county. From 2005 to 2014, Gordon County averaged between 2 and 8 flashes per square kilometer per year. The Gordon County HMPC utilized data from the National Climatic Data Center, the National Weather Service, numerous weather-related news articles and various online resources, and the Gordon County Emergency Operations Plan in researching severe thunderstorms and their impact on the County. With most of the County's recorded severe thunderstorm events, only basic information was available. It is also likely that some severe thunderstorm events have gone unrecorded. Therefore, any conclusions reached based upon available information on severe thunderstorms within Gordon County should be treated as the minimal possible threat. NCDC records show that 180 severe thunderstorms occurred within the County over the past fifty years, which equates to a 360% annual frequency based upon reported events. Over the past twenty years that frequency has essentially doubled, and then fallen back to a similar level of 340% over the past five years. It would appear that severe thunderstorm activity has fluctuated a great deal over time within the County. This may be the case or it may simply be that record keeping and technology have improved significantly over the course of time. It may also be a combination of these two factors. The following chart provides annual frequency of reported events over the past five, ten, twenty, and fifty-year periods. The most recent five-year period, covering the span of time since the last update to this Plan, is highlighted in gold. | Gordon County - Severe Thunderstorm Frequency including Hail & Lightning | | | | | | |--|-------------|-------------|-------------|-------------|--| | (based on Reported Events) | | | | | | | Time Period | 5yrs | 10yrs | 20yrs | 50yrs | | | | (2011-2016) | (2006-2016) | (1996-2016) | (1966-2016) | | | Number of Reported Events | 17 | 53 | 143 | 180 | | | Frequency Average per Year | 3.4 | 5.3 | 7.15 | 3.6 | | | Frequency Percent per Year | 340% | 530% | 715% | 360% | | **C. Assets Exposed to Hazard** – All public and private property including critical facilities are susceptible to severe thunderstorms, hail, and lightning since this hazard is not spatially defined. The map below identifies critical facilities located within the hazard area, which in the case of severe thunderstorms includes all areas within the County, Cities, and Towns. - **D. Estimate of Potential Losses** For loss estimate information, please refer to the Critical Facilities Database (Appendix A). - **E. Multi-Jurisdictional Concerns** Any portion of Gordon County can be negatively impacted by severe thunderstorms, hail, and lightning. Therefore, any mitigation steps taken related to these weather events will be pursued on a countywide basis and include the Cities of Calhoun, Fairmount, Plainville and Ranger, and the Town of Resaca. - **F. Hazard Summary** Overall, severe thunderstorm, hail, and lightning events pose one of the greatest threats to Gordon County in terms of property damage, injuries and loss of life. These weather events represent the most frequently occurring natural hazard within Gordon County and have a great potential to negatively impact the County each year. Based on the frequency of this hazard, as well as its ability to negatively impact any part of the County, the HMPC recommends that the mitigation measures identified in this plan for severe thunderstorm, hail, and lightning be aggressively pursued. Specific mitigation actions related to these weather events are identified in *Chapter 5*. ## 2.3 Flooding **A. Hazard Identification:** The vulnerability of a river or stream to flooding depends upon several variables. Among these are topography, ground saturation, rainfall intensity and duration, soil types, drainage, drainage patterns of streams, and vegetative cover. A large amount of rainfall over a short time span can result in flash flood conditions. Nationally, the total number of flash flood deaths has exceeded tornado fatalities during the last several decades. Two factors seem to be responsible for this: public apathy regarding the flash flood threat and increased urbanization. A small amount of rain can also result in floods in locations where the soil is saturated from a previous wet period or if the rain is concentrated in an area of impermeable surfaces such as large parking lots, paved roadways, etc. Topography and ground cover are also contributing factors for floods in that water runoff is greater in areas with steep slopes and little or no vegetation. Both flooding and flash flooding were considered when determining hazard frequency for flooding in this Plan. The National Weather Service (NWS) defines flooding and flash flooding for the purposes of its storm events database as follows: <u>Flood</u> - Any high flow, overflow, or inundation by water which causes or threatens damage. In general, this would mean the inundation of a normally dry area caused by an increased water level in an established watercourse, or ponding of water, generally occurring more than 6 hours after the causative event, and posing a threat to life or property. This can be on a widespread or localized basis. River flooding may be included in the Flood category. However, such entries should be confined only to the effects of the river flooding, such as roads and bridges washed out, homes and businesses damaged, and the dollar estimates of such damage. <u>Flash Flood</u> - A rapid and extreme flow of high water into a normally dry area, or a rapid water level rise in a stream or creek above a predetermined flood level, beginning within six hours of the causative event (e.g., intense rainfall, dam failure, ice jamrelated), on a widespread or localized basis. Ongoing flooding can intensify to flash flooding in cases where intense rainfall results in a rapid surge of rising flood waters. Flash floods do not exist for two or three consecutive days. River flooding which develops as a result of flash flooding may be included in the narrative. However, such entries should be confined only to the effects of the flooding, such as roads and bridges washed out, homes and businesses damaged, and the dollar estimates of such damage. **B. Hazard Profile:** Over the past fifty years, flood events on record in Gordon County have usually been associated with areas in the vicinity of the County's many creeks and lakes. The areas most affected or potentially most affected include locations in the vicinity of Sam Hunt Rd., Covington Bridge, Love Bridge, Langford Rd, Brookshire Rd, Irwin Mill, Dobson Rd, Water Tank Rd, Hillhouse St, Peter St, Knight Bottom Rd, Millers Ferry Rd, Weber Rd, Reeves Station Rd, Lick Creek Rd, and U.S. 411 in Fairmount. Relatively little information on flooding damage estimates, in terms of dollars, was available. However, with each of these events there were certainly significant costs related to road repair, infrastructure repair, and public safety, at a minimum. Most of the flood damage that has occurred historically within the County appears to be "public" flood damage. More specifically, roads and culverts washing out have been the most common flooding problem on record. Some of the most significant flooding on record to have occurred in Gordon County is documented in the following FEMA maps. The first map is an overview of flood gauges within Gordon County. Maps that follow detail individual flood gauge locations and their historic and recent flood crest levels. Historic crests for these locations include 36.30ft on April 1, 1886 on the Oostanaula River at Resaca, 34.15ft on February 19, 1990 on the Oostanaula River near Calhoun, 20.21ft on December 29, 2015 on the Oothkalooga Creek near Calhoun, 34.20ft on March 30, 1951 on the Coosawattee River near Redbud, and 30.80ft on March 30, 1951 on the Coosawattee River near Pine Chapel. #### Oostanaula River at Resaca #### Flood Categories (in feet) Major Flood Stage: Moderate Flood Stage: 28 Flood Stage: 22 Action Stage: 19 **Historic Crests** (1) 36.30 ft on 04/01/1886 (2) 34.50 ft on 03/31/1951 (3) 33.20 ft on 01/21/1947 (4) 32.70 ft on 02/11/1921 (5) 32.59 ft on 02/18/1990 Show More Historic Crests (P): Preliminary values subject to further review. **Recent Crests** (1) 28.88 ft on 12/28/2015 (2) 24.15 ft on 05/09/2013 (3) 23.75 ft on 01/19/2013 (4) 22.06 ft on 01/11/2009 (5) 24.34 ft on 01/09/2009 Show More Recent Crests (P): Preliminary values subject to further review. **Low Water Records** (1) 1.11 ft on 10/17/2007 (2) 1.15 ft on 09/27/2007 (3) 1.40 ft on 10/25/1954 Show More Low Water Records FEMA Latitude/Longitude Disclaimer: The gauge location shown in the above map is the approximate location based on the latitude/longitude coordinates provided to the NWS by the gauge owner. #### Oostanaula River near Calhoun Latitude/Longitude Disclaimer: The gauge location shown in the above map is the approximate location based on the latitude/longitude coordinates provided to the NWS by the gauge owner. # Oothkalooga Creek near Calhoun Zoom Level:16 ## Coosawattee River near Pine Chapel Latitude/Longitude Disclaimer: The gauge location shown in the above map is the approximate location based on the latitude/longitude coordinates provided to the NWS by the gauge owner. #### Coosawattee River near Redbud Latitude/Longitude Disclaimer: The gauge location shown in the above map is the approximate location based on the latitude/longitude coordinates provided to
the NWS by the gauge owner. NCDC records show that 46 flood events occurred within the County over the past fifty years, which equates to a 92% annual frequency based upon reported events. However, flooding events were obviously underreported during the first two decades of the fifty-year history since reported events for the twenty-year history equal 45, equating to a 225% annual frequency. It would appear that flooding activity has steadily decreased over time within the County. This may be the case or it may simply be that record keeping and technology have improved significantly over the course of time, reflecting more accurate information. It may also be a combination of these two factors. The following chart provides annual frequency of reported events over the past five, ten, twenty, and fifty-year periods. The most recent five-year period, covering the span of time since the last update to this Plan, is highlighted in gold. | Gordon County - Flooding Frequency (based on Reported Events) | | | | | | | |---|-----|------|------|----------------------|--|--| | Time Period 5yrs 10yrs 20yrs 50yrs | | | | 50yrs
(1966-2016) | | | | Number of Reported Events | 4 | 12 | 45 | 46 | | | | Frequency Average per Year | 0.8 | 1.2 | 2.25 | 0.92 | | | | Frequency Percent per Year | 80% | 120% | 225% | 92% | | | Gordon County (CID No. 130094) and the Cities of Calhoun (CID No. 130095), Plainville (CID No. 130319), and the Town of Resaca (CID No. 130589) each participate in the National Flood Insurance Program (NFIP) and follow the Program guidelines to ensure future development is carried out in the best interests of the public. At this time, the Cities of Fairmount and Ranger do not participate in the NFIP, but they each are committed to full participation by the next Plan update, and accordingly mitigation actions have been included in this plan to address this concern. According to NFIP guidelines, each jurisdiction has executed a Flood Damage Prevention Ordinance. The purpose of this ordinance is to minimize the loss of human life and health as well as to minimize public and private property losses due to flood conditions. The ordinance requires that potential flood damage be evaluated at the time of initial construction of structures, facilities and utilities, and that certain uses be restricted or prohibited based on The ordinance also requires that potential homebuyers be this County evaluation. notified that property is located in a flood area. In addition, all construction must adhere to the Georgia State Minimum Standard Codes (Uniform Codes Act). The minimum standards established by these codes provide reasonable protection to persons and property within structures that comply with the regulations for most natural hazards. According to the National Flood Insurance Reform Act, a repetitive loss structure is defined as "...a building covered by a contract for flood insurance that has incurred flood-related damages on two occasions during a 10-year period ending on the date of the event for which a second claim is made, in which the cost of repairing the flood damage, on the average, equaled or exceeded 25 percent of the market value of the building at the time of each such flood event." As of December 2016, there are five official residential "repetitive loss structures" on file for Gordon County. Specific addresses for repetitive loss structures cannot be included in this Plan, but a current list of these structures may be viewed in GMIS by authorized individuals, as determined by the EMA Director. **C. Assets Exposed to Hazard** – In evaluating assets that may potentially be impacted by the effects of flooding, the HMPC determined that, although all critical facilities, public and private property are potentially susceptible to flooding, structures located within the vicinity of Sam Hunt Rd., Covington Bridge, Love Bridge, Langford Rd, Brookshire Rd, Irwin Mill, Dobson Rd, Water Tank Rd, Hillhouse St, Peter St, Knight Bottom Rd, Millers Ferry Rd, Weber Rd, Reeves Station Rd, Lick Creek Rd, and U.S. 411 in Fairmount are the most susceptible. The maps below identify the locations of critical facilities in relationship to the known flooding hazard areas located within the County and each City and Town. # Gordon County City of Calhoun # City of Fairmount City of Plainville City of Ranger Town of Resaca - **D. Estimate of Potential Losses** For loss estimate information, please refer to the Critical Facilities Database (Appendix A). - **E. Multi-Jurisdictional Concerns** Any portion of Gordon County can potentially be impacted by flooding, however, the areas most prone to flooding have historically been those areas located in the vicinity of Sam Hunt Rd., Covington Bridge, Love Bridge, Langford Rd, Brookshire Rd, Irwin Mill, Dobson Rd, Water Tank Rd, Hillhouse St, Peter St, Knight Bottom Rd, Millers Ferry Rd, Weber Rd, Reeves Station Rd, Lick Creek Rd, and U.S. 411 in Fairmount. Any mitigation steps taken related to flooding will be pursued on a countywide basis and include the Cities of Calhoun, Fairmount, Plainville and Ranger, and the Town of Resaca. According to GMIS flood maps, the County and each of the municipalities all have flood-prone areas within or near their jurisdictions. - **F. Hazard Summary** Severe flooding has the potential to inflict significant damage within Gordon County. Mitigation of flood damage requires the community to have knowledge of flood-prone areas, including roads, bridges, bodies of water, and critical facilities, as well as the location of the County's designated shelters. The Gordon County HMPC identified flooding as a hazard requiring mitigation measures and identified specific mitigation goals, objectives and action items they deemed necessary to lessen the impact of flooding. These findings are found in *Chapter 5*. ### 2.4 Winter Storms **A. Hazard Identification** – The Gordon County HMPC researched historical data from the National Climatic Data Center, The National Weather Service, as well as information from past newspaper articles and various online resources relating to winter storms in Gordon County. Winter storms bring the threat of freezing rain, ice, sleet, snow and the associated dangers. A heavy accumulation of ice, especially when accompanied by high winds, devastates trees and power lines. Such storms make highway travel or any outdoor activity extremely hazardous due to falling trees, ice, and other debris. **B. Hazard Profile** – Although winter storms occur relatively infrequently, they have the potential to wreak havoc on the community when they do strike. Winter storms within Gordon County typically cause damage to power lines, trees, buildings, structures, and bridges, to varying degrees. Portions of the County with higher elevations have highways with steep grades, resulting in very hazardous travel conditions when they are covered with frozen precipitation. Another hazard exists due to the large tree population. Trees and branches weighed down by snow and ice become very dangerous to person and property. NCDC records show that 36 winter storms occurred within the County over the past fifty years, which equates to a 72% annual frequency based upon reported events. However, over the course of the most recent 20-year period that frequency has remained significantly higher. It would appear that winter storm activity has increased over time within the County. This may be the case or it may simply be that record keeping and technology have improved significantly over the course of time, reflecting the higher numbers. It may also be a combination of these two factors. The following chart provides annual frequency of reported events over the past five, ten, twenty, and fifty-year periods. The most recent five-year period, covering the span of time since the last update to this Plan, is highlighted in gold. | Gordon County - Winter Storm Frequency | | | | | | |--|---------------------|----------------------|----------------------|----------------------|--| | (based on Reported Events) | | | | | | | Time Period | 5yrs
(2011-2016) | 10yrs
(2006-2016) | 20yrs
(1996-2016) | 50yrs
(1966-2016) | | | Number of Reported Events | 6 | 17 | 32 | 36 | | | Frequency Average per Year | 1.2 | 1.7 | 1.6 | 0.72 | | | Frequency Percent per Year | 120% | 170% | 160% | 72% | | # March 13, 1993 "Storm of the Century" On Wednesday, March 10, 1993, Atlanta's high was 75 degrees, while other parts of the state hit the 80s. But by Friday, forecasters at the National Weather Service were sounding ominous warnings of overnight blizzard conditions as a hurricane-like storm churned out of Florida into Georgia. The "Storm of the Century" as it became known hit metro Atlanta on Saturday, March 13, 1993. The snow began falling early that morning and by the time it had tapered off nearly three feet had fallen across parts of extreme north Georgia, with Gordon County receiving up to 15 inches in some locations. Fifteen people were killed in Georgia, while the death toll across the U.S., Canada and Cuba hit 310. The storm paralyzed metro Atlanta and north Georgia for days, the heavy snowfall closing interstates from Atlanta northward. Saturday's blizzard conditions subsided somewhat by late in the day but were followed by bitter cold, with temperatures plummeting into the teens on Sunday. The following Monday, hundreds if not thousands of motorists were still stranded on snow-packed I-75 through northwest Georgia. National Guardsmen in four-wheel drive vehicles made their way up the interstate, handing out bags of fruit to stranded motorists. The weight of all that snow took its toll on the carpet industry in northwest Georgia, where the roofs of numerous large carpet mills and warehouses collapsed. Over 10 million utility customers lost power as the storm developed into a fierce
Nor'easter as it skirted the Atlantic coast northward. In Georgia, more than a half-million Georgia Power customers were without electricity, some for as long as two weeks. The latest winter storm to affect Gordon County occurred in mid-February of 2015. A strong cold front pushed across Georgia by the morning of February 15th, bringing in plenty of below freezing temperatures to north Georgia. As a low pressure system approached the area from the west on February 16th, warmer temperatures surged northward, bringing much of the area above freezing. However, temperatures at the surface across parts of north and northeast Georgia hovered at or below freezing as the rainfall increased, thanks to a wedge of cold air. Freezing rain continued for these areas into the early morning hours of February 17th before coming to an end. Freezing rain totals reached from 1/4" to 1/2" in some areas, leading to widespread tree and power line damage. By the morning of February 17th, more than 200,000 customers were without power, generally for the northeast Atlanta metro area and points north and east. While this storm didn't impact Gordon County to the extent of other nearby Georgia counties to the east, its impact was a reminder of the damage these winter storms can cause. The following map shows ice accumulations and snowfall totals in Gordon County and surrounding areas. ## **Observed Snowfall Totals** **C. Assets Exposed to Hazard** - All public and private property including critical facilities are susceptible to winter storms since this hazard is not spatially defined. The map below identifies critical facilities located within the hazard area, which in the case of winter storms includes all areas within the County, Cities, and Towns. - **D. Estimate of Potential Losses -** For loss estimate information, please refer to the Critical Facilities Database (Appendix A). - **E. Multi-Jurisdictional Concerns** Any portion of Gordon County can be negatively impacted by winter storms. Therefore, any mitigation steps taken related to winter storms will be pursued on a countywide basis and include the Cities of Calhoun, Fairmount, Plainville and Ranger, and the Town of Resaca. - **G. Hazard Summary** Winter storms, unlike other natural hazards, typically afford communities some advance warning. The National Weather Service issues winter storm warnings and advisories as these storms approach. Unfortunately, even with advance warning, some of the most destructive winter storms have occurred in the Southern United States, where buildings, infrastructure, crops, and livestock are not well-equipped for severe winter conditions. Motorists, not accustomed to driving in snow and icy conditions, pose an additional danger on roads and highways. The Gordon County HMPC recognized the potential threats of winter storms and identified specific mitigation actions. These can be found in *Chapter 5*. #### 2.5 Wildfire **A. Hazard Identification** – The Gordon County HMPC utilized data from Georgia Forestry Commission (GFC) and the Community Wildfire Protection Plan (CWPP) in researching wildfires and their impact on the County. A wildfire is defined as an uncontrolled fire occurring in any natural vegetation. For a wildfire to occur, there must be available oxygen, a supply of fuel, and enough heat to kindle the fuel. Often, these fires are begun by combustion and heat from surface and ground fires and can quickly develop into a major conflagration. A large wildfire may crown, which means it may spread rapidly through the topmost branches of the trees before involving undergrowth or the forest floor. As a result, violent blowups are common in forest fires, and on rare occasion they may assume the characteristics of a firestorm. A firestorm is a violent convection caused by a continuous area of intense fire and characterized by destructively violent surface indrafts. Sometimes it is accompanied by tornado-like whirls that develop as hot air from the burning fuel rises. Such a fire is beyond human intervention and subsides only upon the consumption of everything combustible in the locality. No records were found of such an event ever occurring within Gordon County, but this potential danger will be considered when planning mitigation efforts. The threat of wildfire varies with weather conditions: drought, heat, and wind participate in drying out the timber or other fuel, making it easier to ignite. Once a fire is burning, drought, heat, and wind all increase its intensity. Topography also affects wildfire, which spreads quickly uphill and slowly downhill. Dried grass, leaves, and light branches are considered flash fuels; they ignite readily, and fire spreads quickly in them, often generating enough heat to ignite heavier fuels such as tree trunks, heavy limbs, and the matted duff of the forest floor. Such fuels, ordinarily slow to kindle, are difficult to extinguish. Green fuels (growing vegetation) are not considered flammable, but an intense fire can dry out leaves and needles quickly enough to allow ready ignition. Green fuels sometimes carry a special danger: evergreens, such as pine, cedar, fir, and spruce, contain flammable oils that burst into flames when heated sufficiently by the searing drafts of a wildfire. Tools for fighting wildfires range from the standard equipment of fire departments to portable pumps, tank trucks, and earth-moving equipment. Firefighting forces specially trained to deal with wildfire are maintained by local, state and federal entities including the Gordon County Fire Department, Georgia Forestry, and U.S. Forest Service. These trained firefighters may attack a fire directly by spraying water, beating out flames, and removing vegetation at the edge of the fire to contain it behind a fire line. When the very edge is too hot to approach, a fire line is built at a safe distance, sometimes using strip burning or backfire to eliminate fuel in the path of the uncontrolled fire or to change the fire's direction or slow its progress. Backfiring is used only as a last resort. The control of wildfires has developed into an independent and complex science costing approximately \$100 million annually in the United States. Because of the extremely rapid spreading and customary inaccessibility of fires once started, the chief aim of this work is prevention. However, despite the use of modern techniques (e.g., radio communications, rapid helicopter transport, and new types of chemical firefighting apparatus) more than 10 million acres of forest are still burned annually. Of these fires, about two thirds are started accidentally by people, almost one quarter are of incendiary origin, and more than 10% are due to lightning. #### **B.** Hazard Profile – Wildfires are a serious threat to Gordon County. GFC records show that 3,141 wildfires occurred within the County over the past fifty years, which equates to a 6,282% annual frequency based upon reported events. Over the course of the entire 50-year period that frequency has steadily declined. It would appear that wildfire activity has decreased over time within the County. The following chart provides annual frequency of reported events over the past five, ten, twenty, and fifty-year periods. The most recent five-year period, covering the span of time since the last update to this Plan, is highlighted in gold. | Gordon County – Wildfire | | | | | |---------------------------------|------------------|----------------------|----------------------|----------------------| | (based on Reported Events) | | | | | | Time Period | 5yrs (2011-2016) | 10yrs
(2006-2016) | 20yrs
(1996-2016) | 50yrs
(1966-2016) | | Number of Reported Events | 93 | 232 | 882 | 3141 | | Frequency Average per Year | 18.6 | 23.2 | 44.1 | 62.82 | | Frequency Percent per Year | 1860% | 2320% | 4410% | 6282% | As of July 5, 2016, Gordon County's threat of wildfire was classified as "moderate" by the U.S. Forest Service. However, this status can change from week to week. See the following map. Another resource utilized during the planning process comes from the Georgia Forestry Commission. GFC forecasts a "moderate" to "high" level of fire danger for Gordon County for July 4, 2016. These results change daily. See map below. # Forecast Fire Danger for Tomorrow Produced at July 4, 2016 130pm EST **C. Assets Exposed to Hazard** – In evaluating assets that are susceptible to wildfire, the committee determined that all public and private property is susceptible to wildfire, including all critical facilities. The maps on the following pages display the wildfire risk potential for Gordon County and each of the municipalities, including locations of critical facilities within the hazard areas. The following key applies to each of the maps. | Wildfire Threat
Category | Description | |-----------------------------|---| | 0 | LOWEST THREAT: includes areas with no houses, areas with bodies of water, agricultural areas, and/or cities | | 1 | VERY LOW THREAT | | 2 | LOW THREAT | | 3 | MODERATE THREAT | | 4 | HIGH THREAT | | * | ALL OTHER VALUES | The Wildfire Risk Layer was based on the USDA Forest Service, RMRS Fire Sciences Laboratory "Wildland Fire Risk to Flammable Structures, V 1.0" map. Although this data was not intended for use at a detail greater than state-wide analysis, it has been included as the best available data on wildfire risk. The scores are based on the risk value from the original layer. The horizontal positional accuracy is unknown for this layer. # Gordon County City of Calhoun City of Fairmount City of Plainville City of Ranger Town of Resaca According to the USDA Forest Service "Wildfire Risk Layer", all portions of the County, Cities, and Towns have been classified under Wildfire Threat Categories 0, 1 or 2, among the lowest threats on a scale of 0 to 4. Nothing within the County or
Cities/Towns has been classified under Wildfire Threat Category 3 (Moderate Threat) or Category 4 (High Threat). Nevertheless, the threat of wildfire certainly exists for all jurisdictions. - **D. Estimate of Potential Losses** In most of the documented cases of wildfire within Gordon County, relatively little information on damages, in terms of dollars, was available. The potential commercial value of the land lost to wildfire cannot be accurately calculated, other than replacement costs of structures and infrastructure. With regard to the land itself, aside from the loss of timber and recreation, the damage is inestimable in terms of land rendered useless by ensuing soil erosion, elimination of wildlife cover and forage, and the loss of water reserves collected by a healthy forest. For available loss estimate information, please refer to the Critical Facilities Database (Appendix A). - **E. Multi-Jurisdictional Concerns** Despite low countywide wildfire threat classifications, any portion of Gordon County has to potential to be impacted by wildfire. One reason for this is the common interface between urban developments and the forest. Any steps taken to mitigate the effects of wildfire should be undertaken on a countywide basis and include the Cities of Calhoun, Fairmount, Plainville and Ranger, and the Town of Resaca. An additional concern for all jurisdictions is that the CWPP's are no longer available online, which limits access to that data. - **F. Hazard Summary** Wildfires pose a serious threat to Gordon County in terms of property damage, as well as injuries and loss of life. Wildfires are one of the most frequently occurring natural hazards within the County each year. Based on the frequency of this hazard, as well as its ability to inflict devastation most anywhere in the County, the mitigation measures identified in this plan will be thoroughly pursued. Specific mitigation actions related to wildfire are identified in *Chapter 5*. # 2.6 Drought **A. Hazard Identification** –The term "drought" has various meanings, depending upon context. To a farmer, a drought is a period of moisture deficiency that affects the crops under cultivation (even two weeks without rainfall can stress many crops during certain periods of the growing cycle). To a water manager, a drought is a deficiency in water supply that affects water availability and water quality. To a meteorologist, a drought is a prolonged period when precipitation is less than normal. To a hydrologist, a drought is an extended period of decreased precipitation and streamflow. Drought is a normal, recurrent feature of climate. It occurs almost everywhere, although its features vary from region to region. Droughts in Georgia historically have severely affected municipal and industrial water supplies, agriculture (including both livestock and crops), stream water quality, recreation at major reservoirs, hydropower generation, navigation, and forest resources. Drought is also a key factor in wildfire development by making natural fuels (grass, brush, trees, dead vegetation) more fire prone. In Georgia, droughts have been documented at U.S. Geological Survey (USGS) streamflow gaging stations since the 1890's. From 1910 to 1940, about 20 streamflow gaging stations were in operation. Since the early 1950's through the late 1980's, about 100 streamflow gaging stations were in operation. Currently, the USGS streamflow gaging network consists of more than 135 continuous-recording gages. Groundwater levels are currently monitored at 165 wells equipped with continuous recorders. B. Hazard Profile — The Gordon County HMPC reviewed historical data from the National Oceanic and Atmospheric Administration (NOAA), the National Climatic Data Center (NCDC), the U.S. Geological Survey (USGS), the Georgia Department of Natural Resources (GA DNR) and the Georgia Forestry Commission (GFC) in researching drought events of the County and the State. Most historical information related to drought within this Plan has been derived from USGS streamflow data and NOAA precipitation data. Due to the nature of drought to affect large areas of the State simultaneously and the availability of only very limited County-specific drought information, the threat of drought is looked at within this Plan from a statewide perspective. Similarly, due to limited month-by-month information on drought, this hazard will be quantified on an annual basis (either there was a drought or there was not for any given year within the State). These guidelines are also used in Appendix B and Appendix C with regard to historical hazard information and estimated probability of future occurrence. In the State of Georgia significant drought events, as identified by USGS, NOAA and other sources, have occurred in 25 of the last 50 years. Gordon County was affected to varying degrees in each of those years. Over the course of the entire 50-year period the recorded frequency of drought has ranged between 40% and 70% per year. The following chart provides annual frequency of reported events over the past five, ten, twenty, and fifty-year periods. The most recent five-year period, covering the span of time since the last update to this Plan, is highlighted in gold. | Gordon County - Drought (based on Reported Events) | | | | | |--|---------------------|------------------|----------------------|----------------------| | Time Period | 5yrs
(2011-2016) | 10yrs | 20yrs
(1996-2016) | 50yrs
(1966-2016) | | Number of Reported Events | 2 | 7 | 14 | 25 × | | Frequency Average per Year | 0.4 | <mark>0.7</mark> | <mark>0.7</mark> | <mark>0.5</mark> | | Frequency Percent per Year | 40% | <mark>70%</mark> | <mark>70%</mark> | <mark>50%</mark> | Some of the most extreme droughts to affect the State include the following: Note: When researching drought, one term that is frequently used is recurrence interval. The recurrence interval is the average time between droughts of a given severity. For instance, in a drought with a 25-year recurrence interval the low streamflows occur, on average, once every 25 years. <u>1903-1905:</u> According to the USGS, the 1903 to 1905 drought is "the earliest recorded severe drought in Georgia." In 1904, the U.S. Weather Bureau (today's National Weather Service) reported, "Levels in streams and wells were the lowest in several years. Many localities had to conserve water for stock and machinery and many factories were forced to close or operate at half capacity." When the 1903 drought struck, farm jobs dried up as quickly as the fields. The cities attracted many of these workers who migrated to Atlanta. 1924-1927: The drought that struck from 1924 to 1927 affected a wider area than simply north Georgia, affecting the Coosa River and Altamaha Basin as well at the Chattahoochee River. The U.S. Weather Bureau reported the lowest stream levels ever recorded in north Georgia in July-September of 1925, stating that the drought not only affected agricultural operations, but industrial operations as well. The scarcity of water had a profound influence on industrial and agricultural conditions in Georgia. This may have been the first time Georgia media used the term "Drought of the Century". Combined with the ongoing devastation from the boll weevil and technological advances in agriculture that increased efficiency and thereby reduced the number of farm jobs, migration from rural Georgia to urban Georgia increased significantly. The impact of this drought, plus other natural events, helped send the Georgia economy into a depression well before the rest of the United States. 1930-1935: Although the drought of 1930-1935 had little long term impact on north Georgia, it contributed to the ongoing economic problems throughout the state and the United States as a whole. The USGS reports that the severity of this drought "exceeded a 25-year recurrence interval" in central and southwestern Georgia and affected much of the Country. In extreme northern and southeastern Georgia, the recurrence interval was 10–25 years. This period was also referred to as the "Drought of the Century." ### Central Georgia - 1936 1938-1944: Many of the same areas that suffered during the 1930 to 1935 drought endured severe drought again from 1938 to 1944. The drought of 1938-1944 struck the upper Coosa River basin and the Chattahoochee River basin. According to USGS the recurrence interval exceeded 50 years in those areas. In extreme northern and southwestern Georgia, the drought had recurrence intervals of 10–25 years. It was this drought that convinced politicians to move towards massive hydroelectric projects that would supply power and keep water available to constituents throughout long dry spells. One of the key supporters of hydroelectric power in the United States was Senator Richard B. Russell, member of the Senate Appropriations Committee. The first such dam in the State, Allatoona, was begun in 1941 and completed after World War II. <u>1950-1957</u>: A large statewide drought lasted from 1950 to 1957. Most streamflows had recurrence intervals exceeding 25 years according to USGS. The catastrophic drought devastated crops by 1954. This event also earned the title as "Drought of the Century." This drought was most severe in southern Georgia, with most streamflows having recurrence intervals exceeding 25 years. In northeastern Georgia, the drought severity also exceeded the 25-year recurrence interval. The low rainfall affected the length of time it took to fill Lake Lanier for the first time since its creation in 1950 and completion in 1956. In northwestern Georgia, the recurrence interval of the drought was between 10 and 25 years. <u>1976-1978:</u> According to USGS, beginning in 1976, the weather over southwest Georgia turned towards a persistent pattern of late-summer drought including parts of the Chattahoochee Valley. <u>1980-1982</u>: The 1980 to 1982 drought
resulted in the lowest streamflows since 1954 in most areas, and the lowest streamflows since 1925 in others. Recurrence intervals of 10–25 years were common in most of Georgia. Pool levels at four major reservoirs receded to the lowest levels since first filling. Groundwater levels in many observation wells were lower than previously observed. Nearly continuous declines were recorded in some wells for as long as 20 consecutive months, and water levels remained below previous record lows for as long as nine consecutive months. 1985-1989: Many North Georgia residents remember the drought of 1985 to 1989 that saw Lake Lanier reach its lowest levels since it was filled in 1950. Streamflows touched the lows reached during the 1925 drought. Water-supply shortages occurred in Georgia in 1986. Shortages first occurred in a few Atlanta metropolitan systems, primarily because of large demand and small reservoir storage. As the drought continued, other systems in the southern part of the metropolitan area also had water-supply problems, as did several municipalities in northern and central Georgia. During 1986, the U.S. Army Corps of Engineers significantly decreased the release of water from Lake Lanier, but reservoir levels continued to recede to about 2 feet above the record minimum lake level. Ground-water levels in northern Georgia were significantly less than normal during the 1985 to 1989 drought, and shortages in ground-water supplies from domestic wells occurred in the northern one-third of the State. <u>1998-2003</u>: From 1998 until 2003, with a brief respite in 2000-2001, North Georgia suffered through a historic drought. The term "historic," in this instance, is used by weathermen to describe a drought of unusually long duration, one of the three measures of a drought. While the regional impact of a long-term drought is massive, in North Georgia's case, the drought's effect was mitigated, simply because of technology, mostly the dams built by the Corps of Engineers and others. Earlier droughts, however, did not have the benefit of these dams and had a "historic" impact on North Georgia. Shortages of surface-water supplies similar to those during 1986 occurred in the 1998 to 2003 drought. Water shortages during the summer of 2000 prompted the Georgia Department of Natural Resources to institute statewide restrictions on outdoor water use. **2006-2009:** Beginning in late 2006 another drought struck north Georgia, on the heels of the earlier 5-year drought. River levels plummeted, causing lakes to fill up more slowly when water was released. Georgia politicians battled against the Army Corps of Engineers' continuous flow requirement for Lake Lanier due to the looming water shortages. The Georgia Environmental Protection Division (EPD) declared a level four drought response across the northern third of Georgia, including Gordon County, which prohibits most types of outdoor residential water use effective immediately. Lake Lanier and Lake Allatoona 2007 (L to R) Lake Hartwell 2008 <u>2011-2012:</u> For two years beginning in 2011, the County was impacted once again by a relatively short, but severe drought. **<u>2016</u>**: The most recent drought began in 2016 and had not ended at the time this Plan was updated. Agricultural crop damage during periods of drought is difficult to estimate. Water supplies, industries, power generation, agriculture, forests, wetlands, stream water quality, navigation, and recreation for the State of Georgia have been severely impacted over time. Because of the extremely unpredictable nature of drought (to include duration), reliably calculating a recurrence interval is difficult. The Hazard Frequency Table in Appendix C analyzes historical data from the past fifty years to provide a general idea of the frequency of drought within the State. The following maps represent current and forecasted drought conditions. Each of these maps is updated on a regular basis. Drought conditions can change very rapidly and must be continuously monitored. The Palmer Drought Severity Index map shows current drought conditions nationwide and is updated weekly. According to the map, the County's current drought status, as of July 2, 2016, is "extreme drought". The U.S. Seasonal Drought Outlook map, forecasts likely drought conditions through September 30, 2016, which indicates that drought conditions are likely to persist in Gordon County within this time period. The U.S. Drought Monitor indicates that as of June 28, 2016, Gordon County is experiencing severe drought conditions at this time. **C. Assets Exposed to Hazard** — All public and private property including critical facilities are susceptible to drought since this hazard is not spatially defined. The danger of drought is compounded due to the fact that drought conditions create a heightened risk for wildfire. The map below identifies critical facilities located within the hazard area, which in the case of drought includes all areas within the County, Cities, and Towns. **D. Estimate of Potential Losses** – No damage to facilities is anticipated as a result of drought conditions, aside from the threat of wildfire. Crop damage cannot be accurately quantified due to several unknown variables: duration of the drought, temperatures during the drought, severity of the drought, rainfall requirements for specific crops and livestock, and the different growing seasons. There may also be financial losses related to water system shortages. For loss estimate information, please refer to Appendix A, the Critical Facilities Database, and Appendix D, Worksheet 3a, for each jurisdiction. **E. Multi-Jurisdictional Concerns** – Agricultural losses associated with drought are more likely to occur in the rural, less concentrated areas of the County. Although the Cities of Calhoun, Fairmount, Plainville and Ranger, and the Town of Resaca may be slightly less likely to experience agricultural-related drought losses than the County, they can be financially impacted by water resource-related drought losses. **F. Hazard Summary** – Unlike other hazard events, drought causes damage slowly. A sustained drought can cause severe economic stress to the agricultural interests of the County and even the entire State or Region. The potential negative effects of sustained drought are numerous. In addition to an increased threat of wildfires, drought can affect water supplies, stream-water quality, water recreation facilities, hydropower generation, as well as agricultural and forest resources. The HMPC realized the limitations associated with mitigation actions for drought, but did identify some basic mitigation measures in *Chapter 5*. # 2.7 Earthquakes **A. Hazard Identification** – One of the most frightening and destructive natural hazards is a severe earthquake. An earthquake is a sudden movement of the Earth, caused by the abrupt release of strain that has accumulated over a long time. The forces of plate tectonics shape the Earth as the huge plates that form the Earth's surface slowly move over, under, and past each other. Sometimes the movement is gradual. At other times, the plates are locked together, unable to release the accumulating energy. When the accumulated energy grows strong enough, the plates break free. If the earthquake occurs in a populated area, it may cause many deaths, injuries and extensive property damage. The goal of earthquake prediction is to give warning of potentially damaging earthquakes early enough to allow appropriate response to the disaster, enabling people to minimize loss of life and property. The U.S. Geological Survey conducts and supports research on the likelihood of future earthquakes. This research includes field, laboratory, and theoretical investigations of earthquake mechanisms and fault zones. A primary goal of earthquake research is to increase the reliability of earthquake probability estimates. Ultimately, scientists would like to be able to specify a high probability for a specific earthquake on a particular fault within a particular year. Scientists estimate earthquake probabilities in two ways: by studying the history of large earthquakes in a specific area and the rate at which strain accumulates in the rock. Scientists study the past frequency of large earthquakes in order to determine the future likelihood of similar large shocks. For example, if a region has experienced four magnitude 7 or larger earthquakes during 200 years of recorded history, and if these shocks occurred randomly in time, then scientists would assign a 50 percent probability (that is, just as likely to happen as not to happen) to the occurrence of another magnitude 7 or larger quake in the region during the next 50 years. But in many places, the assumption of random occurrence with time may not be true, because when strain is released along one part of the fault system, it may actually increase on another part. Another way to estimate the likelihood of future earthquakes is to study how fast strain accumulates. When plate movements build the strain in rocks to a critical level, like pulling a rubber band too tight, the rocks will suddenly break and slip to a new position. Scientists measure how much strain accumulates along a fault segment each year, how much time has passed since the last earthquake along the segment, and how much strain was released in the last earthquake. This information is then used to calculate the time required for the accumulating strain to build to the levels that result in an earthquake. This simple model is complicated by the fact that such detailed information about faults is rare. In the United States, only the San Andreas Fault system has adequate records for using this prediction method. Magnitude and intensity measure different characteristics of earthquakes. Magnitude measures the energy released at the source of the earthquake and is determined from measurements on seismographs. Intensity measures the strength
of shaking produced by the earthquake at a certain location and is determined from effects on people, human structures, and the natural environment. The following two tables describe the Abbreviated Modified Mercalli Intensity Scale, and show intensities that are typically observed at locations near the epicenter of earthquakes of different magnitudes. ## **Magnitude / Intensity Comparison** | Magnitude | Typical Maximum Modified Mercalli Intensity | |-----------------------|--| | 1.0 - 3.0 | I I | | 3.0 - 3.9 | II - III | | 4.0 - 4.9 | IV - V | | 5.0 - 5.9 | VI - VII | | 6.0 - 6.9 | VII - IX | | 7.0 and higher | VIII or higher | ### **Abbreviated Modified Mercalli Intensity Scale** - I. Not felt except by a very few under especially favorable conditions. - II. Felt only by a few persons at rest, especially on upper floors of buildings. - III. Felt quite noticeably by persons indoors, especially on upper floors of buildings. Many people do not recognize it as an earthquake. Standing motor cars may rock slightly. Vibrations similar to the passing of a truck. Duration estimated. - IV. Felt indoors by many, outdoors by few during the day. At night, some awakened. Dishes, windows, doors disturbed; walls make cracking sound. Sensation like heavy truck striking building. Standing motor cars rocked noticeably. - V. Felt by nearly everyone; many awakened. Some dishes, windows broken. Unstable objects overturned. Pendulum clocks may stop. - VI. Felt by all, many frightened. Some heavy furniture moved; a few instances of fallen plaster. Damage slight. - VII. Damage negligible in buildings of good design and construction; slight to moderate in well-built ordinary structures; considerable damage in poorly built or badly designed structures; some chimneys broken. - VIII. Damage slight in specially designed structures; considerable damage in ordinary substantial buildings with partial collapse. Damage great in poorly built structures. Fall of chimneys, factory stacks, columns, monuments, walls. Heavy furniture overturned. - IX. Damage considerable in specially designed structures; well-designed frame structures thrown out of plumb. Damage great in substantial buildings, with partial collapse. Buildings shifted off foundations. - X. Some well-built wooden structures destroyed; most masonry and frame structures destroyed with foundations. Rails bent. - XI. Few, if any (masonry) structures remain standing. Bridges destroyed. Rails bent greatly. - XII. Damage total. Lines of sight and level are distorted. Objects thrown into the air. The following USGS map provides a historical view of earthquakes in the Eastern United States. **B. Hazard Profile** – The first earthquakes recorded as being felt in Georgia were the great New Madrid earthquakes of 1811-1812 (also known as the Mississippi River Valley earthquakes) centered in northeast Arkansas and New Madrid, Missouri. There were hundreds of earthquakes during the two month period between December 16, 1811 and February 7, 1812. On the basis of the large area of damage (600,000 square kilometers), the widespread area of perceptibility (5,000,000 square kilometers), and the complex physiographic changes that occurred, this series of earthquakes rank as some of the largest in the United States since its settlement by Europeans. The area of strong shaking associated with these shocks is two to three times larger than that of the 1964 Alaska earthquake and 10 times larger than that of the 1906 San Francisco earthquake. The first three major earthquakes occurred in northeast Arkansas on December 16, 1811 (three shocks - Mfa 7.2/MSn 8.5; Mfa 7.0/MSn 8.0; and MSn 8.0). There were six aftershocks on December 16th and 17th alone in the range of M5.5 to M6.3 (Note: aftershocks actually are earthquakes). The fourth earthquake occurred in Missouri on January 23, 1812 (Mfa 7.1/MSn 8.4). The fifth earthquake occurred in New Madrid, Missouri on February 7, 1812 (Mfa 7.4/ MSn 8.8). This is the earthquake that created Reelfoot Lake, located in northwest Tennessee. It was reported to have been formed as the Mississippi River flowed backward for 10-24 hours to fill the lake. As a result of this earthquake, the original town of New Madrid now lies under the Mississippi River. This accounted for a total of five earthquakes of magnitude MSn 8.0 or higher occurring in a period of 54 days. The first earthquake caused only slight damage to man-made structures, mainly because the region was so sparsely populated. However, as the earthquakes continued, they began to open deep cracks in the ground, created landslides on the steeper bluffs and hillsides, large areas of land were uplifted, and sizable sink areas were created. These five main earthquakes, and several aftershocks, were felt over almost all of the eastern United States including the State of Georgia. In Georgia this series of earthquakes was strong enough to have shaken bricks from chimneys and other minor damage. The great Charleston, South Carolina, earthquake of 1886 killed approximately 60 people. The magnitude 7.3 earthquake is the most damaging earthquake to occur in the Southeast United States and one of the largest historic shocks in Eastern North America. It damaged or destroyed many buildings in the old city of Charleston. Property damage was estimated at \$5-\$6 million. Structural damage was reported several hundred kilometers from Charleston including in the State of Georgia. On August 31, 1886 at 9:25 pm, preceded by a low rumble, the shock waves reached Savannah. People had difficulty remaining standing. One woman died of fright as the shaking cracked walls, felled chimneys, and broke windows. Panic at a revival service left two injured and two more were injured in leaping from upper story windows. Several more were injured by falling bricks. Ten buildings in Savannah were damaged beyond repair and at least 240 chimneys damaged. People spent the night outside. At Tybee Island light station the 134 foot lighthouse was cracked near the middle where the walls were six feet thick, and the one-ton lens moved an inch and a half to the northeast. In Augusta the shaking was the most severe (VIII on the Modified Mercalli scale) in the State. An estimated 1000 chimneys and many buildings were damaged. The business and social life was paralyzed for two days. Brunswick and Darien were affected as well. **June 17, 1872**: An earthquake on June 17, 1872 in Milledgeville, GA and had an intensity of at least V on the Modified Mercalli scale, the lowest intensity in which some damage may occur. It was reported as a sharp shock, jarring brick buildings and rattling windows. **November 1, 1875**: On November 1, 1875, at 9:55 in the evening, an intensity VI earthquake occurred near the South Carolina border. It was felt from Spartanburg and Columbia, South Carolina, to Atlanta and Macon, Georgia, from Gainesville to Augusta, and generally over an area of 25,000 square miles. **October 18, 1902**: A more local event occurred on October 18, 1902, with a sharp shock felt along the east face of Rocky Face Mountain, just west of Dalton, GA with intensity VI and at LaFayette, GA with intensity V. The earthquake was felt over an area of about 1500 square miles including Chattanooga, Tennessee. **January 23, 1903**: The Savannah, GA area was shaken with an intensity VI earthquake on January 23, 1903. Centering near Tybee Island, it was felt over an area of 10,000 square miles including Savannah (intensity VI), Augusta (intensity III), Charleston (intensity IV-V), and Columbia (intensity III-IV). Houses were strongly shaken. June 20, 1912: Another shock was felt on June 20, 1912, at Savannah with intensity V. March 5, 1914: According to USGS, Georgia experienced another earthquake on March 5, 1914. Magnitude 4.5. Community Internet Intensity Map (8 miles ENE of Fort Payne, Alabama March 5, 1916: On March 5, 1916, an earthquake centered 30 miles southeast of Atlanta was felt over an area of 50,000 square miles, as far as Cherokee County, North Carolina, by several 35°N people in Raleigh, and in parts of Alabama and Tennessee. March 12, 1964: An earthquake of intensity V or over occurred on March 12, 1964, centered near Haddock, GA less than 20 miles northeast of Macon. Intensity V was recorded at Haddock while shaking was felt in four counties over a 400-square-mile area. **April 29, 2003**: On April 29, 2003 just before 5:00 a.m. a moderate earthquake, rated 4.9 on the Richter Scale, shook most of the northwest corner of Georgia, south to Atlanta. The epicenter was located in Menlo, GA, about 37 miles south of Chattanooga. See map to right. **August 23, 2011**: On August 23, 2011 at 1:51pm, a 5.8 magnitude earthquake originated near Louisa and Mineral, Virginia. It struck Washington DC (about 100 miles away from epicenter) causing moderate shaking and potentially significant damage. The earthquake was recorded all along the Appalachians, from Georgia to New England. The earthquake was felt so widely because it was a shallow earthquake, and geologic conditions in the eastern U.S. allow the effects of earthquakes to propagate and spread much more efficiently than in the western United States. Only mild movement was felt in Gordon County. See map to the right. To a large extent, the HMPC was unable to determine which of these earthquakes affected Gordon County and, if so, to what degree. Nevertheless, the HMPC has determined that most of the earthquakes documented above, which is not an all-inclusive list, would have been strong enough or would have occurred close enough to the County to merit consideration. Two of these earthquakes occurred within the 50-year study period and are included in the hazard history of this Plan. The threat of earthquakes in Gordon County may be more significant than the documented earthquake history would seem to indicate. Based on U.S. Geological Survey estimations using
the earthquake frequency method described in the section above, the probability of an earthquake of a magnitude over 5.0 within Gordon County over the next 25 years is between 2% and 3% (see map below). As discussed above, such predictions are based on limited information, and cannot necessarily be relied upon for their precision. However, they do help demonstrate that the threat of earthquakes cannot be overlooked especially in the northwestern portions of Georgia. #### Probability of earthquake with M > 5.0 within 25 years & 50 km GMT 2016 Jul 12 00:01:41 Earthquake probabilities from USGS OFR 08-1128 PSHA. 50 km maximum horizontal distance. Site of interest: triangle. Epicenters mb>5 black circles; rivers biue. The 2014 U.S. Geological Survey (USGS) National Seismic Hazard Maps, including the one on the following page, display earthquake ground motions for various probability levels across the United States and are applied in seismic provisions of building codes, insurance rate structures, risk assessments, and other public policy. The updated maps represent an assessment of the best available science in earthquake hazards and incorporate new findings on earthquake ground shaking, faults, seismicity, and geodesy. The USGS National Seismic Hazard Mapping Project developed these maps by incorporating information on potential earthquakes and associated ground shaking obtained from interaction in science and engineering workshops involving hundreds of participants, review by several science organizations and State surveys, and advice from expert panels and a Steering Committee. The new probabilistic hazard maps represent an update of the seismic hazard maps; previous versions were developed by Petersen and others (2008) and Frankel and others (2002), using the methodology developed Frankel and others (1996). Algermissen and Perkins (1976) published the first probabilistic seismic hazard map of the United States which was updated in Algermissen and others (1990). The National Seismic Hazard Maps are derived from seismic hazard curves calculated on a grid of sites across the United States that describe the annual frequency of exceeding a set of ground motions. Data and maps from the 2014 U.S. Geological Survey National Seismic Hazard Mapping Project are available for download below. Maps for available periods (0.2 s, 1 s, PGA) and specified annual frequencies of exceedance can be calculated from the hazard curves. Figures depict probabilistic ground motions with a 2 percent probability of exceedance. Spectral accelerations are calculated for 5 percent damped linear elastic oscillators. All ground motions are calculated for site conditions with Vs30=760 m/s, corresponding to NEHRP B/C site class boundary. # Simplified 2014 Hazard Map (PGA, 2% in 50 years) Two-percent probability of exceedance in 50 years map of peak ground acceleration C. Assets Exposed to Hazard - All structures and facilities within Gordon County are susceptible to earthquake damage since they can occur in any portion of the County or Cities/Towns. The likelihood of an earthquake in Gordon County and the Cities of Calhoun, Fairmount, Plainville and Ranger, and the Town of Resaca ranges from "moderate to high" threat to "highest" threat. Most areas within the County and all areas within the Cities of Calhoun, Fairmount, Plainville and Ranger are located within Seismic Threat Category 3, "moderate to high threat." The remainder of the County, mostly northern and western portions, including the Town of Resaca, is located within Seismic Threat Category 4, "highest threat." Generally, the further northwest the location within the County, the higher the seismic threat appears to be. The seismic hazard layer used in the maps that follow is based on the USGS Probabilistic Seismic Hazard Map, showing the percentage of gravity that the area has a 2 percent probability of exceedance in 50 years. The score classification reflects that used by the IRC Seismic Design Categories. The horizontal positional accuracy is unknown for this layer. | Seismic Threat
Category | Original Value | Description | |----------------------------|----------------|--| | 1 | A | 0-17% gravity (lowest threat) | | 2 | В | 17-33% gravity (low to moderate threat) | | 3 | С | 33-50% gravity (moderate to high threat) | | 4 | D1 | 50-83% gravity (highest threat) | | * | Not applicable | All other values | # Gordon County Georgia has a few large faults, including the Blue Ridge fault. The Blue Ridge fault extends from Alabama through Georgia and into Tennessee. The fault runs across the northwest corner of Georgia. This region of Georgia is the most seismically active in the State. Gordon County is located in this active area. - **D. Estimate of Potential Losses** For loss estimate information, please refer to Appendix A, the Critical Facilities Database, and Appendix D, Worksheet 3a, for each jurisdiction. - **E. Multi-Jurisdictional Concerns** All of Gordon County has the potential to be affected by earthquakes. The threat appears to be highest in the northern and western portions of the County and the Town of Resaca. Any steps taken to mitigate the effects of earthquake will be undertaken on a countywide basis and include the Cities of Calhoun, Fairmount, Plainville and Ranger, and the Town of Resaca. - **F. Hazard Summary** Scientific understanding of earthquakes is of vital importance to the Nation. As the population increases, expanding urban development and construction works encroach upon areas susceptible to earthquakes. With a greater understanding of the causes and effects of earthquakes, we may be able to reduce damage and loss of life from this destructive phenomenon. The HMPC was limited in its ability to develop mitigation measures associated with earthquakes, but did provide some guidance in *Chapter 5*. #### 2.8 Landslides **A. Hazard Identification** – Landslides occur in every U.S. state and territory. In a landslide, masses of rock, earth, or debris move down a slope. Landslides can be small, large, slow or rapid. They can be activated by storms, earthquakes, volcanic eruptions, fires, freeze/thaw cycles, and steep-slope erosion. Landslides are often more damaging and deadly than the triggering event. The dangerous conditions may be high even as emergency personnel are providing rescue and recovery services. Landslide problems can be caused by land mismanagement, particularly in mountain, canyon and coastal regions. In areas burned by forest and brush fires a lower threshold of precipitation may initiate landslides. Land-use zoning, professional inspections, and proper design can minimize many landslide, mudflow, and debris flow problems. B. Hazard Profile – Landslides are a threat to Gordon County. Steep slopes, combined with the potential for wildfires increase the probability of a landslide occurring in Gordon County within any given year. Though the HMPC did not find specific records detailing landslides within the County, it was determined that this threat should be included in the risk assessment. The accompanying map below is a preliminary digital version of Geological Survey Professional Paper 1183, Landslide Overview Map of the Conterminous United States, by Dorothy H. Radbruch-Hall, Roger B. Colton, William E. Davies, Ivo Lucchitta, Betty A. Skipp, and David J. Varnes, 1982. This map and the original delineate areas where large numbers of landslides have occurred and areas which are susceptible to landsliding in the conterminous United States. There is no updated version of this USGS map as of 2016 and it is believed to be the best available information at this time. #### Landslide Overview Map of the Conterminous United States #### Closer view of Northwest Georgia section of map: #### Legend #### LANDSLIDE INCIDENCE High (More than 15% of area involved) Moderate (15%-1.5% of area involved) Low (Less than 1.5% of area involved) #### LANDSLIDE SUSCEPTIBILITY High Moderate Susceptibility not indicated where same as or lower than incidence Landslide of special interest. Number refers to publications listed on reverse Italic number shown in upper right-hand corner of a State indicates a general reference for that State Southern limit of Pleistocene continental glacial deposits-Data for area east of the juncture of the Milk River and U.S.-Canada boundary from King and Beikman, 1974. Data for area west of this point from National Research Council, 1945; Crandell, D. R., 1965, modified by data from Waitt, Richard, written communication, 1976; and Colton and others, 1961. (See references at end of text) → 8 → Isohyets showing 8 or 10 inches of mean annual precipitation (Hachures indicate low side of line). From "Climates of the States" (National Oceanic and Atmospheric Administration, 1974) In compiling the original map, the authors considered landslides to be any downward and outward movement of earth materials on a slope. Not included in the compilation were talus deposits, deposits resulting from ancient landslides not related to present slopes, large gravitational thrust sheets, solifluction deposits, snow avalanches, and debris deposited by flows that contribute to alluvial fans in arid regions. Individual landslides could not be shown at this scale. The map was prepared by evaluating formations or groups of formations shown on the geologic map of the United States (King and Beikman, 1974) as being of high, medium, or low susceptibility to landsliding and classified the formations as having high, medium, or low landslide incidence (number of landslides). Susceptibility to landsliding was defined as the probable degree of response of the areal rocks and soils to natural or artificial cutting or loading of slopes or to anomalously high precipitation. High, medium, and low susceptibility are delimited by the percentages given below for classifying the incidence of landsliding. Susceptibility is not indicated where lower
than incidence. The effect on slope stability caused by earthquakes was not evaluated, although many catastrophic landslides have been generated by ground shaking during earthquakes. Areas susceptible to ground failure under static conditions would probably also be susceptible to failure during earthquakes. In areas of continental glaciation, additional data were used to identify surficial deposits that are susceptible to slope movement The map units were classified into three incidence categories according to the percentage of the area involved in landslide processes. Area involved in landsliding Incidence >15% High 1.5-15% Medium <1.5% Low. Published data were used whenever possible for the original map. In many places, the percentage of a formation involved in landsliding, as shown on large-scale published maps, was determined by counting squares of a superimposed grid. Formations shown on the largescale maps were then correlated with geologic units on the geologic map of the United States. Aerial photography, newspaper accounts, fieldwork, and other published data were used in other areas. For many parts of the country, however, particularly for parts of the Western United States, information on landslides and their relation to geologic conditions is sparse. Data from the relatively small number of geologic maps and reports that give detailed information on slope stability in scattered places, were therefore extrapolated as accurately as possible into adjacent areas. Although both slope angle and precipitation influence slope stability, full weight was not given to these factors in preparing the original map. At that time no slope map or detailed precipitation map existed at a suitable scale for the entire United States. The susceptibility categories are largely subjective because insufficient data were available for precise determinations. Where source maps show slope movement for one part of a geologic unit but not for others, it is generally unknown whether the absence of recorded landslides indicates a difference in natural conditions or simply a scarcity of information on landslides for those parts of the unit. Generally, the authors assumed that anomalous precipitation or changes in existing conditions can initiate landslide movement in rocks and soils that have numerous landslides in parts of their outcrop areas. Because the map is highly generalized, owing to the small scale and the scarcity of precise landslide information for much of the country, it is unsuitable for local planning or actual site selection. - **C. Assets Exposed to Hazard** In evaluating assets that are susceptible to landslides, the HMPC determined that any public and private property located in the vicinity of Gordon County's steep slopes is susceptible to landslides, including critical facilities. In addition, any portion of the County, Cities, and Towns can be negatively impacted in the event a landslide blocks a road or highway preventing public safety response. - **D. Estimate of Potential Losses** Landslide losses are difficult to estimate due to their unpredictable nature. For available loss estimate information, please refer to the Critical Facilities Database (Appendix A). - **E. Multi-Jurisdictional Concerns** Due to topography, many portions of Gordon County and the Cities of Calhoun, Fairmount, Plainville and Ranger, and the Town of Resaca can be negatively impacted by landslides. Therefore, any mitigation steps taken related to these weather events will be pursued on a countywide basis and include all jurisdictions. - **F. Hazard Summary** Though not very common, landslide events do pose a threat to Gordon County in terms of property damage, injuries and loss of life. Specific mitigation actions related to these weather events are identified in *Chapter 5*. ### <u>Chapter 3</u> <u>Local Technological Hazard, Risk and Vulnerability (HRV)</u> <u>Summary</u> In accordance with FEMA guidelines, the Gordon County Hazard Mitigation Planning Committee (HMPC) also included information relating to technological or "human-caused" hazards into this plan. The term, "technological hazard" refers to incidents resulting from human activities such as the manufacture, transportation, storage, and use of hazardous materials. This plan assumes that hazards resulting from technological sources are accidental, and that their consequences are unintended. Unfortunately, the information relating to technological hazards is much more limited, due largely to the very limited historical data available. This causes a greater level of uncertainty with regard to mitigation measures. However, enough information has been gathered to provide a basic look at technological hazards within Gordon County. The Gordon County Hazard Mitigation Planning Committee (HMPC) identified two technological hazards the County is vulnerable to based upon available data including scientific evidence, known past events, and future probability estimates. As a result of this planning process, which included an analysis of the risks associated with probable frequency and impact of each hazard, the HMPC determined that each of these technological hazards pose a threat significant enough to address within this Plan. These include hazardous materials release and dam failure. Each of these technological hazards is addressed in this chapter of the Plan. An explanation and results of the vulnerability assessment are found in Tables 3-1 and 3-2. <u>Table 3.1 – Hazards Terminology Differences</u> | Hazards Identified in
2008 Georgia State
Plan | Equivalent/Associated
Hazards Identified in the
2011 Gordon County Plan | Difference | |---|---|------------| | Dam Failure | Dam Failure | None | <u>Table 3.2 – Vulnerability Assessment - Technological Hazards</u> (see Keys below) | HAZARD | Gordon | Calhoun | Fairmount | Plainville | Ranger | Resaca | |------------------|--------|---------|-----------|------------|--------|--------| | Hazmat Re | lease | | | | | | | Frequency | H | Н | Н | Н | Н | Н | | Severity | Н | Н | Н | Н | Н | Н | | Probability | EX | Н | Н | Н | Н | EX | | Dam Failur | e | | | | | | | Frequency | L | L | L | L | L | L | | Severity | Н | Н | M | M | M | M | | Probability | L | L | L | L | L | L | #### **Key for Table 3.2 – Vulnerability Assessment Frequency and Probability Definitions** NA Not applicable; not a hazard to the jurisdiction VL Very low risk/occurrence Low risk; little damage potential (for example, minor damage to less than 5% of the jurisdiction) Medium risk; moderate damage potential (for example, causing partial M damage to 5-15% of the jurisdiction, infrequent occurrence) High risk; significant risk/major damage potential (for example, destructive, damage to more than 15% of the jurisdiction, regular occurrence) Extensive risk/probability/impact EX #### 3.1 Hazardous Materials Release **A. Hazard Identification** – Hazardous materials (hazmat) refers to any material that, because of its quantity, concentration, or physical or chemical characteristics, may pose a real hazard to human health or the environment if it is released. Hazmat includes flammable and combustible materials, toxic materials, corrosive materials, oxidizers, aerosols, and compressed gases. Specific examples of hazmat are gasoline, bulk fuels, propane, propellants, mercury, asbestos, ammunition, medical waste, sewage, and chemical, biological, radiological, nuclear, and explosive (CBRNE) threat agents. Specific federal and state guidelines exist on transport and shipping hazardous materials. Research institutes, industrial plants, individual households, and government agencies all generate chemical waste. Approximately one percent is classified as hazardous. A hazmat spill or release occurs when hazardous material or waste gets into the environment in an uncontrolled fashion. Many manufacturing processes use hazardous materials or generate hazardous waste, but a hazardous spill doesn't always come from a chemical plant or a factory. Any substance in the wrong place at the wrong time in too large an amount can cause harm to the environment. The response to a spill depends on the situation. When the emergency response team is notified of a spill, it must quickly decide what sort of danger is likely. Members of the team collect appropriate clothing and equipment and travel to the scene. There they try to contain the spill, sometimes testing a sample to identify it. If necessary, they decontaminate themselves before leaving the area. Once material has been identified, other personnel arrive to remove it. **B. Hazard Profile** – Hazmat spills are usually categorized as either fixed releases, which occur when hazmat is released on the site of a facility or industry that stores or manufactures hazmat, or transportation-related releases, which occur when hazmat is released during transport from one place to another. Both fixed and transportation-related hazmat spills represent tremendous threats to Gordon County. Potential fixed hazmat spills within the County would come from local commercial and industrial establishments. Transportation-related hazmat spills could come from commercial traffic on major highways or commercial rail lines. Much of the potential threat is associated with the significant carpet industry located in and around Gordon County. CSX rail lines travel through Gordon County and the Cities of Calhoun, Fairmount, Plainville, Ranger, and Resaca. See map below. The Georgia Department of Transportation (GDOT) rail maps on the following two pages provide locations of the rail lines running through Gordon County, as well as the information relating to tonnage. # Georgia Rail System C. Assets Exposed to Hazard – The environment is especially vulnerable to hazardous materials releases, with waterways being at greatest risk of
contamination. Georgia EPD tracks information on waterways within Gordon County that have been contaminated to varying degrees due to hazmat spills. These incidents include contamination to creeks, lakes, storm sewers, wells, and drainage ditches. Such releases are also a potential threat to all property and persons within any primary highway corridors or railroad corridors of Gordon Co. since certain hazmat releases can create several square miles of contamination. The same holds true of property and persons located in the vicinity of facilities or industries that produce or handle large amounts of hazardous materials. The most common hazmat releases have generally included diesel, gasoline, oil, and sewage. Unfortunately, Georgia EPD no longer makes specific hazmat spill information available to the public as they once did. If at some point this changes, that data will be considered at the next Plan update. All public and private property including critical facilities are susceptible to hazardous materials release since this hazard is not spatially defined. The map below identifies critical facilities located within the hazard area, which in the case of drought includes all areas within the County, Cities, and Towns. - **D. Estimate of Potential Losses** It is difficult to determine potential damage to the environment caused by hazardous materials releases. What can be calculated are the significant response costs incurred once a hazmat release does occur including emergency response, road closings, evacuations, watershed protection, expended manhours, and cleanup materials and equipment. Corridors for Interstate 75, U.S. Routes 41 and 411, State Routes 3, 53, 61, 136, 156, 225, and 401, and CSX and Norfolk Southern rail lines are most vulnerable to transportation-related releases. However, such releases can occur in virtually any part of the County accessible by road. Fixed location releases are not as likely to affect the more rural areas of the County. For additional loss estimate information, please refer to the Critical Facilities Database (Appendix A). - **E. Multi-Jurisdictional Concerns** All of Gordon County, including the Cities of Calhoun, Fairmount, Plainville and Ranger, and the Town of Resaca, is vulnerable to both fixed and transportation-related hazardous materials releases. - **F. Hazard Summary** Hazardous materials releases are a significant threat to Gordon County. Unknown quantities and types of hazmat are transported through the County by truck and railroad on a daily basis. The main corridors of concern are Interstate 75, U.S. Routes 41 and 411, State Routes 3, 53, 61, 136, 156, 225, and 401, and CSX and Norfolk Southern rail lines. These hazmat shipments pose a great potential threat to all of Gordon County. The fact that the County is unable to track these shipments seriously limits the mitigation measures that can be put into place. Fixed hazmat releases are also considered to be a major threat to Gordon County due to the industries located therein. Therefore, the Gordon County HMPC has identified specific mitigation actions for hazardous materials releases in *Chapter 5*. #### 3.2 Dam Failure **A. Hazard Identification** – Georgia law defines a dam as any artificial barrier which impounds or diverts water, is 25 feet or more in height from the natural bed of the stream, or has an impounding capacity at maximum water storage evaluation of 100 acre-feet (equivalent to 100 acres one foot deep) or more. Dams are usually constructed to provide a ready supply of water for drinking, irrigation, recreation and other purposes. They can be made of rock, earth, masonry, or concrete or of combinations of these materials. Dam failure is a term used to describe the major breach of a dam and subsequent loss of contained water. Dam failure can result in loss of life and damage to structures, roads, utilities, crops, and livestock. Economic losses can also result from a lowered tax base, lack of utility profits, disruption of commerce and governmental services, and extraordinary public expenditures for food relief and protection. National statistics show that overtopping due to inadequate spillway design, debris blockage of spillways, or settlement of the dam crest account for one third of all U.S. dam failures. Foundation defects, including settlement and slope instability, account for another third of all failures. Piping and seepage, and other problems cause the remaining third of national dam failures. This includes internal erosion caused by seepage, seepage and erosion along hydraulic structures, leakage through animal burrows, and cracks in the dam. The increasing age of dams nationwide is a contributing factor to each of the problems above. **B. Hazard Profile** – Congress first authorized the US Army Corps of Engineers to inventory dams in the United States with the National Dam Inspection Act (Public Law 92-367) of 1972. The Water Resources Development Act of 1986 (P.L. 99-662) authorized the Corps to maintain and periodically publish an updated National Inventory of Dams (NID), with re-authorization and a dedicated funding source provided under the Water Resources Development Act of 1996 (P.L. 104-3). The Corps also began close collaboration with the Federal Emergency Management Agency (FEMA) and state regulatory offices to obtain more accurate and complete information. The National Dam Safety and Security Act of 2002 (P.L. 107-310) reauthorized the National Dam Safety Program and included the maintenance and update of the NID by the Corps of Engineers. The most recent Dam Safety Act of 2006 reauthorized the maintenance and update of the NID. The NID consists of dams meeting at least one of the following criteria: - 1) High hazard classification loss of one human life is likely if the dam fails, - 2) Significant hazard classification possible loss of human life and likely significant property or environmental destruction, - 3) Equal or exceed 25 feet in height and exceed 15 acre-feet in storage, - 4) Equal or exceed 50 acre-feet storage and exceed 6 feet in height. The goal of the NID is to include all dams in the U.S. that meet these criteria, yet in reality, is limited to information that can be gathered and properly interpreted with the given funding. The inventory initially consisted of approximately 45,000 dams, which were gathered from extensive record searches and some feature extraction from aerial imagery. Since continued and methodical updates have been conducted, data collection has been focused on the most reliable data sources, which are the various federal and state government dam construction and regulation offices. In most cases, dams within the NID criteria are regulated (construction permit, inspection, and/or enforcement) by federal or state agencies, who have basic information on the dams within their jurisdiction. Therein lies the biggest challenge, and most of the effort to maintain the NID; periodic collection of dam characteristics from states, territories, and 18 federal offices. Database management software is used by most state agencies to compile and export update information for the NID. With source agencies using such software, the Corps of Engineers receives data that can be parsed and has the proper NID codes. The Corps can then resolve duplicative and conflicting data from the many data sources, which helps obtain the more complete, accurate, and updated NID. The National Inventory of Dams Map for the State of Georgia is located below and displays the State's current inventory of 5,132 dams. The following five US Army Corps of Engineers charts are derived from NID information and present information related to number, hazard potential, type, ownership, purpose, and age of Georgia dams. As you can see in the last chart above, most Georgia dams were built during the 1950's through the 1970's. This puts the average age of Georgia dams at close to 50 years old. The Gordon County HMPC reviewed data from the US Army Corps of Engineers National Inventory of Dams, the Environmental Protection Division (EPD) within the Georgia Department of Natural Resources (DNR), as well as County records in their research involving dam failure within Gordon County. Fortunately, Gordon County has never experienced a total dam failure with a Category I dam. It is also possible that some small private dams have been breached at some point in the past, but no records have been found to indicate any type of emergency response related to such a failure, or even that such a failure has taken place. However, the potential for such a disaster does exist, and the appropriate steps must be taken to minimize such risks. The Georgia Safe Dams Program helps to accomplish that. The Georgia Safe Dams Act of 1978 established Georgia's Safe Dams Program following the November 6, 1977 failure of the Kelly Barnes Dam in Toccoa, GA, in which 39 people lost their lives when the breached dam, which held back a 45-acre lake, sent a 30-foot-high wall of water sweeping through Toccoa Falls College. The Environmental Protection Division (EPD) within the Georgia Department of Natural Resources (DNR) is responsible for administering the Program. The purpose of the Program is to provide for the inspection and permitting of certain dams in order to protect the health, safety, and welfare of all citizens of the state by reducing the risk of failure of such dams. The Program has two main functions: (1) to inventory and classify dams and (2) to regulate and permit high hazard dams. Although a total Category I dam failure has never been recorded in Gordon County, a partial failure of Lookout Lake Dam did occur in 2004. Mitigation actions are not yet completed for the Dam. Structures below the State minimum height and impoundment requirements (25 feet or more in height or an impounding capacity of 100 acre-feet or more) are exempt from regulation by the Georgia Safe Dams Program. The Program checks the flood
plain of the dam to determine its hazard classification. Specialized software is used to build a computer model to simulate a dam breach and establish the height of the flood wave in the downstream plain. If the results of the dam breach analysis, also called a flood routing, indicate that a breach of the dam would result in a probable loss of human life, the dam is classified as Category I (high-hazard). As of December 2011, the Program's statewide inventory of dams consisted of 475 Category I dams, 3,410 Category II dams and 1,186 exempt dams. The Program noted that an additional 120 Category II dams needed to be studied for possible reclassification to Category I dams. The Safe Dams Program also approves plans and specifications for construction and repair of all Category I dams. In addition, Category I dams are continuously monitored for safety by Georgia EPD. To date, the Safe Dam Program has identified **three Category I dams** within Gordon County. These dams are the Cedar Hill Lake Dam, Salacoa Creek Watershed Dam No. 77, and Salacoa Creek Watershed Dam No 89. It is important to note that the one dam located in Murray County, Carters Lake Dam, meets the guidelines of a Category I dam and has the potential to seriously impact Gordon County and the City of Calhoun. Therefore, any mitigation actions related to dam failure should always take into consideration Carters Lake Dam. The additional 31 identified dams within the County are Category II dams (20), undesignated (1), or exempt (10). There may be a number of unclassified dams within the County as well. The Program requires all Category II dams to be inventoried at least every five years. - **C. Assets Exposed to Hazard** Areas most vulnerable to the physical damages associated with dam failure within Gordon County, though such a risk appears to be relatively low, are the low-lying and downstream areas associated with each of the dams inventoried by the Safe Dam Program. Although physical damages associated with dam failure would be limited to certain areas, the damage to the local economy and problems associated with delivery of water and other utilities could be felt Countywide and include all areas of the County, Cities, and Towns. - **D. Estimate of Potential Losses** Loss estimation due to dam failure is an approximate effort, at best. Direct loss to infrastructure, critical facilities and businesses in terms of repair and replacement can be roughly estimated. For additional loss estimate information, please refer to the Critical Facilities Database (Appendix A). - **E.** Multi-Jurisdictional Concerns All of Gordon County, including the Cities of Calhoun, Fairmount, Plainville and Ranger, and the Town of Resaca, is vulnerable to the negative impact of dam failure. - **F. Hazard Summary** Due largely to the fact that Category I dams have been identified in Gordon County, the Gordon County HMPC has identified some specific mitigation actions for dam failure in *Chapter 5*. # **Chapter 4 Land Use and Development Trends** After review by the HMPC, it was determined that current and future development does not appear to significantly impact the vulnerabilities of Gordon County, including the Cities of Calhoun, Fairmount, Plainville and Ranger, and the Town of Resaca. Nevertheless, the most current development information available is outlined below. The chart below demonstrates a summary of the existing land use in Gordon County based upon tax digest information provided by the Gordon County Tax Assessor Office. | Land Use Classification | Gordon County | | | | | |--------------------------------------|---------------|--------|--|--|--| | | Acres | % | | | | | Residential | 44,504 | 20.08% | | | | | Commercial | 3,244 | 1.46% | | | | | Industrial | 3,915 | 1.77% | | | | | Public/Institutional | 1,229 | 0.55% | | | | | Conservation/Parks/Recreation | 96,368 | 43.48% | | | | | Agriculture/Forestry | 71,454 | 32.24% | | | | | Transportation/Communication/Utility | 919 | 0.41% | | | | | Total | 221,634 | 100% | | | | Gordon County Existing Land Use Map Growth inevitably impacts the natural and cultural environments as well as community facilities, services and infrastructure required to service an area. The table below outlines areas where the real estate market has and continues to produce development that is dominated by single-function land uses, where aging commercial areas are in need of functional and aesthetic revitalization, where growth should be well managed due to the environmentally-sensitive nature of the land, or where historical districts and elements should be maintained as they comprise much of the identity of the County. | Area | Description | |-----------------------------------|---| | Historic Areas | All significant or recognized historic areas and structures will likely be threatened by encroaching development or incompatible land uses at some point in time. Proper land use planning and guidelines are needed to protect viable cultural resources. | | Natural Resources | Natural resources, particularly water resources, are of special concern as the County experiences population growth and associated housing and commercial development. Greenspace planning and preservation will also be important to preserving natural resources and providing recreation sources and transportation alternatives for residents. | | Annexation Islands | Within the Calhoun city limits are parcels of land that are technically located in the County, essentially islands of unincorporated Gordon County within the City limits. To simplify logistics for EMS, Fire, Police and other public services, attention should be focused to correct these islands caused by annexation. | | East-West Commercial
Corridors | These are the corridors east of Calhoun along SR 53 and SR156, Dews Pond Road and Boone Ford Road. These corridors contain much of the recent housing development. As development intensifies, careful consideration should be given to the location and types of commercial development that complement residential land use as well as provide opportunities to shorten travel times and provide pedestrian or transportation alternatives. | | Water and Sewer
Development | Areas for water and sewer development have been identified and projects planned through 2015 by the City of Calhoun. It is important to encourage development in the planned areas or only allow water and sewer to new developments that will provide sufficient infrastructure that can be extended to later developments beyond the immediate project. Open communication with the City is imperative. | | Steep Slopes | Limited primarily to the eastern and western borders, development planned on steep slopes greater than 25% should be carefully considered due to the potentially harmful environmental factors, such as erosion, and added costs to the developers, property owners and County. | A key component of the comprehensive planning process is the creation of a Future Development Map that reflects the County's vision for growth and development for the next twenty years. This vision is expressed in unique "character areas" that cover the entire County. Character area planning focuses on the way an area looks and how it functions. Tailored development strategies are applied to each area, with the goal of enhancing the existing character/function or promoting a desired character for the future. The character areas recommended for Gordon County and its municipalities, defined and shown in the Future Development Map, define areas that: - Presently have unique or special characteristics that need to be preserved - Have potential to evolve into unique areas - Require special attention because of unique development issues Eleven character areas are reflected on the Future Development Map for unincorporated Gordon County, as follows: - 1. River Corridor/Floodplain Preserve - 2. Hillside Conservation - 3. Historic Resource Protection - 4. Salacoa Creek Park - 5. Rural Crossroads - 6. Rural/Agricultural Reserve - 7. Emerging Suburban - 8. Emerging Mixed Use Center Community Node - 9. Emerging Mixed Use Center Regional Activity - 10. Industrial - 11. Proposed South Calhoun Bypass For more information on each character area, see the complete Gordon County Comprehensive Plan. Future Development Maps for each jurisdiction are located on the pages that follow. Gordon County Future Development Map Future Development Map City of Ranger Future Development Map #### **Local Capabilities** Local mitigation capabilities are existing authorities, policies, programs and resources that reduce hazard impacts or that could be used to implement hazard mitigation activities. The HMPC reviewed local capabilities and the available information is included in the Local Capabilities Assessment Chart below. #### Local Capability Assessment | Plan, Code/Ordinance,
Tool or Funding Method | In place to address hazard mitigation by following jurisdictions (G=Gordon, C=Calhoun, F=Fairmount, P=Plainville, RA=Ranger, RE=Resaca) | Adequately utilized or enforced to address hazard mitigation | Updated
regularly or
as required
by law | Notes | |---|---|--|--|---| | Comprehensive
Plan | G, C, F, P, RA, RE | Y | Y | 2007-2027; update in progress | | Local Emergency
Operations Plan (LEOP) | G | Y | Y | 2017 update scheduled | | Transportation Plan | NA | NA | NA | | | Community Wildfire
Protection Plan (CWPP) | G, C, F, P, RA, RE | Y | Y | updated every 5 years | | Building Code | G, C, F, P, RA, RE | Y | Y | 2015 International Building Code | | Site Plan Review | G, C | Y | Y | process continuously updated | | ISO Rating | G, C | Y | Y | G=6, C=3 | | Zoning Ordinance | G, C | Y | Y | process continuously updated | | Subdivision Ordinance | G, C | Y | Y | process continuously updated | | Floodplain Ordinance | G, C, F, P, RA, RE | Y | Y | as required by NFIP participation | | Planning Commission | G, C | Y | Y | G = 5-member board, 4yr terms
C = 5 member Zoning Advisory Board | | Hazard Mitigation | | | | | | | | |----------------------------|--|----|----|---------------------------------------|--|--|--| | Planning Committee | ing Committee G, C, F, P, RA, RE | | Y | 2017 HMP update in progress | | | | | (HMPC) | | | | | | | | | Mutual Aid Agreements | G, C, F, P, RA, RE | Y | Y | State and local jurisdictions | | | | | Mass Notification System | G | Y | Y | Code Red | | | | | Grant Writing | G, C, F, P, RA, RE | Y | NA | staff and contract grant writers | | | | | CERT Team | G | Y | Y | education & training ongoing | | | | | Public outreach & | G, C, F, P, RA, RE | Y | Y | see mitigation actions chart | | | | | education programs | U, C, F, F, KA, KE | 1 | 1 | | | | | | GEMA School Safety | G | Y | v | updated annually & submitted to local | | | | | Plan | U | 1 | 1 | EMA and GEMA | | | | | Storm Ready Certification | G | Y | Y | current | | | | | Capital improvement | G, C, F, P, RA, RE | Y | NA | see mitigation actions chart | | | | | projects | $\mathbf{G}, \mathbf{C}, \mathbf{F}, \mathbf{F}, \mathbf{KA}, \mathbf{KE}$ | I | NA | see intigation actions chart | | | | | Impact fees | NA | NA | NA | | | | | | Bonds, taxes, utility fees | G, C, F, P, RA, RE | Y | NA | ongoing | | | | ### **Chapter 5 Hazard Mitigation Goals, Objectives, & Actions** When Gordon County and the Cities of Calhoun, Fairmount, Plainville and Ranger, and the Town of Resaca begin any large-scale planning effort, it is imperative that the planning process is driven by a clear set of goals and objectives. Goals and objectives are the foundation of an effective Hazard Mitigation Plan. They address the key problems and opportunities to help establish a framework for identifying risks and developing strategies to mitigate those risks. Gordon County's multi-jurisdictional Hazard Mitigation Planning Committee (HMPC) reviewed and re-evaluated the four major goals and numerous objectives for the purposes of this Plan and determined that they all remain valid and effective. No changes were recommended. In order to fully understand the hazard mitigation goals, objectives, and actions, it is necessary to clearly define the terms "goal", "objective", and "action": A **goal** is a broad-based statement of intent that establishes the direction for the Gordon County Hazard Mitigation Plan. Goals can essentially be thought of as the desired "outcomes" of successful implementation of the Plan. An **objective** is the stated "means" of achieving each goal, or the tasks to be executed in the process of achieving goals. An **action** is a project-specific strategy to mitigate a particular hazard event within the context of the overarching goals and objectives. While specific mitigation actions are listed later in this chapter, it is important to note that the actions were selected and evaluated in relation to the overarching hazard mitigation goals and objectives of this plan, which are as follows: Goal #1. Protect life and minimize loss of property damage. Objective 1-1. Implement mitigation actions that will assist in protecting lives and property by making homes, businesses, public facilities, and infrastructure more resistant to vulnerable hazards. Objective 1-2. Review existing ordinances, building codes, and safety inspection procedures to help ensure that they employ the most recent and generally acceptable standards for the protection of buildings. Objective 1-3. Ensure that public and private facilities and infrastructure meet established building codes and enforce the codes to address any deficiencies. Objective 1-4. Implement mitigation actions that encourage the protection of the environment. Objective 1-5. Integrate the recommendations of this plan into existing land use plans and capital improvement programs. Objective 1-6. Build upon past databases to ensure that vulnerable hazards' risks are accurate. Goal #2. Increase Public Awareness. Objective 2-1. Develop and implement additional education and outreach programs to increase public awareness of the risks associated with hazards and on specific preparedness activities available. Objective 2-2. Encourage homeowners and businesses to take preventative actions and purchase hazard insurance. Goal #3. Encourage Partnerships. Objective 3-1. Strengthen inter-jurisdictional and inter-agency communication, coordination, and partnerships to foster hazard mitigation actions designed to benefit multiple jurisdictions. Objective 3-2. Identify and implement ways to engage public agencies with individual citizens, nonprofit organizations, business, and industry to implement mitigation activities more effectively. Goal #4. Provide for Emergency Services. Objective 4-1. Where appropriate, coordinate and integrate hazard mitigation actions with existing emergency operations plans. Objective 4-2. Identify the need for, and acquire, any special emergency services and equipment to enhance response capabilities for specific hazards. Objective 4-3. Encourage the establishment of policies to help ensure the prioritization and implementation of mitigation actions designed to benefit critical facilities, critical services, and emergency traffic routes. #### **Format Utilized to Develop Mitigation Actions** The HMPC reviewed each jurisdiction's annual budget, multiyear work programs, and comprehensive plans to determine existing mitigation actions that met the goals and objectives of this Plan. The committee then developed a list of tentative mitigation actions based on committee members' personal knowledge, interviews with other officials of each jurisdiction, and knowledge of successful actions implemented in other communities. The committee members developed a prioritized list utilizing the GEMA recommended STAPLEE prioritization methodology, with special emphasis on the following: - 1. Cost effectiveness (and when potential federal projects are anticipated, costbenefit reviews will be conducted prior to application); - 2. Comprehensiveness, i.e. addresses a specific goal and objective; - 3. Addresses reducing effects of hazards on new and existing buildings and infrastructure; - 4. Addresses reducing effects of hazards on critical facilities where necessary; and, - 5. Identification of future public buildings and infrastructure (Note: recognizing that the Plan may be modified and evaluated during the monitoring and evaluation period, and will definitely be completely updated within the federally mandated five year approval cycle, future development including future buildings will only include the five year period from Plan completion). All rankings were composited to represent the consensus of the HMPC. Members of the HMPC prioritized the potential mitigation measures identified in this Plan. A list of mitigation goals, objectives and related action items was compiled from the inputs of the HMPC, as well as from others within the community. subcommittee prioritized the potential mitigation measures based on what they considered most beneficial to the community. Several criteria were established to assist HMPC members in the prioritization of these suggested mitigation actions. Criteria included perceived cost benefit or cost effectiveness, availability of potential funding sources, overall technical feasibility, measurable milestones, multiple objectives, determination of public and political support for the proposed actions, and the STAPLEE method described above. Through this prioritization process, several projects emerged as being a greater priority than others. Some of the projects involved expending considerable amounts of funds to initiate the required actions. Most projects allowed the community to pursue completion of the project using potential grant funding. Still others required no significant financial commitment by the community. All proposed mitigation actions were evaluated to determine the degree to which the County would benefit in relation to the project costs. After review by the HMPC, the prioritized list of mitigation measures, as presented within this Plan, was determined. This same method of prioritization was utilized for the prior update to this Plan. Additionally, it was reviewed by the HMPC during the current plan update process and approved for continued use due to its effectiveness. No changes were recommended. #### **Mitigation Actions** Each mitigation action is presented by jurisdiction, or in the case of joint actions by multiple jurisdictions, or by independent public bodies (such as School System), or by private nonprofits (such as the Medical Center), in priority order (objective), by best estimate of cost, if applicable, by potential funding source if other than operating budgets, by jurisdiction, department or agency that will administer the action, and by timeframe. Timeframes actually do not begin until funding is fully obtained for any particular project. However, for purposes of demonstration in the mitigation actions chart below, timeframes presume full funding as of 2017. This will obviously not be the case for all projects, but it demonstrates what is possible
should funding become available. Each mitigation action that follows may be supported by one or more jurisdictions below. The Cities of Calhoun, Fairmount, Plainville and Ranger, and the Town of Resaca have relatively small populations. Due to limited financial and human resources, much support with regard to public safety is provided by Gordon County. This includes assistance with emergency management, fire protection, and law enforcement. The Cities and Towns do have some capability, but it is augmented by the County. Therefore, many mitigation actions included on behalf of the County in the Plan are likely to have an indirect benefit for the Cities of Calhoun, Fairmount, Plainville and Ranger, and the Town of Resaca. The term "All" as used in the mitigation actions chart below under the column "Jurisdictional Participants" refers to all jurisdictions included under this Plan. Each mitigation action that follows is also designed to mitigate one or more hazards discussed in this Plan. Those specific hazards are listed for each mitigation action at the end of each mitigation action description. The term "All" as used in the mitigation actions chart below under the column "Hazards Addressed" refers to all hazards discussed in this Plan. Each mitigation action that follows mitigates the effects of hazards on existing structures/infrastructure, future structures/infrastructure, or both, as indicated. In addition, the status of each mitigation action that follows is indicated by one of the following three terms: <u>PRELIMINARY</u> – unfunded projects or projects in planning stages. <u>IN PROGRESS</u> – funded projects that have begun but aren't completed. <u>ONGOING</u> – continuous projects that are never truly completed; may be funded or unfunded at any given time but are expected to continue unless removed from Plan. | Priority | Mitigation Action | Hazard(s)
Addressed | Jurisdictional
Participants | Likely Lead Dept,
Jurisdiction, or Agency | Project
Status | Cost Estimate | Potential
Funding
Source(s) – not
all inclusive | Project Completion (presuming 2017 funding) | Goals and
Objectives | Structures &
Infrastructure
Impacted | |----------|--|------------------------|--------------------------------|--|-------------------|--------------------|--|---|--|--| | 1 | National Flood Insurance Program (NFIP) Participation | Flooding | Fairmount
Ranger | City of Fairmount and City of Ranger | Preliminary | Staff time | General funds | 2019 | 1-1, 1-2, 1-3, 1-4,
1-5, 1-6, 2-1, 2-2,
4-1, 4-3 | Existing and Future | | 2 | Emergency Notification System (Code Red) | All | All | Gordon County EMA and
Gordon County E-911 | Ongoing | \$22.5K per year | Public and private funding; general funds | 2022 | 1-6, 2-1, 3-2, 4-1,
4-2 | Existing and Future | | 3 | Public Awareness Campaign | All | All | Each jurisdiction (jointly or separately) | Ongoing | \$18K per year | Public and private funding; general funds | 2022 | 2-1, 2-2, 3-1, 3-2 | Existing | | 4 | Stormwater Flooding | Flooding | All | Each jurisdiction (jointly or separately) | Preliminary | \$2 million + | Public and private funding; general funds | 2022 | 1-1, 1-2, 1-3, 1-4,
1-5, 1-6, 4-1 | Existing and Future | | 5 | City of Fairmount Stormwater Detention | Flooding | Fairmount | City of Fairmount | Preliminary | \$200K | Public and private funding | 2022 | 1-1, 1-2, 1-3, 1-4,
1-5, 1-6, 4-1 | Existing and Future | | 6 | City of Fairmount Infrastructure Improvements | Flooding | Fairmount | City of Fairmount | Preliminary | \$2 million | Public and private funding | 2022 | 1-1, 1-2, 1-3, 1-4,
1-5, 1-6, 4-1 | Existing and Future | | 7 | Updated Floodplain Mapping | Flooding | All | Each jurisdiction (jointly or separately) | Ongoing | \$30K per update | Public and private funding; general funds | 2020 | 1-1, 1-2, 1-3, 1-4,
1-5, 1-6, 4-1 | Existing and Future | | 8 | Community Rating System | Flooding | All | Each jurisdiction (jointly or separately) | Ongoing | Staff time | General funds | 2022 | 1-1, 1-2, 1-3, 1-4,
1-5, 1-6, 2-1, 2-2,
4-1, 4-3 | Existing and Future | | 9 | GEMA School Safety Plan Updates every 5 years | All | All | Gordon County EMA | Ongoing | Staff time | General funds | 2022 | 1-1, 1-2, 1-3, 2-1,
3-1, 3-2, 4-1 | Existing and Future | | 10 | Community Wildfire Protection Plan (CWPP) Updates every 5 years | Wildfire | All | Gordon County Fire-Rescue | Ongoing | Staff time and GFC | General funds,
GFC | 2022 | 1-1, 1-2, 1-3, 2-1,
3-1, 3-2, 4-1 | Existing and Future | | 11 | Wildfire Mitigation at Talking Rock Properties & Deerefield Lane/Pocket Rd (2 brush trucks – one each at Stations 8 and 9) | Wildfire | Gordon County | Gordon County Fire-Rescue | In progress | \$100K each | Public and private funding; general funds | 2018 | 1-1, 4-1, 4-2, 4-3 | Existing and Future | | 12 | Road Maintenance for Winter Weather Events | Winter Storm | All | Gordon County Public
Works | Ongoing | \$200K per year | Public and private funding; general funds | 2022 | 1-1, 1-2, 1-3, 1-4,
1-5, 1-6, 4-1 | Existing | | 13 | Local Emergency Planning Committee (LEPC) | Hazmat
Release | All | Gordon County EMA | Ongoing | Staff time | General funds | 2022 | 1-1, 1-2, 1-3, 2-1,
3-1, 3-2, 4-1, 4-3 | Existing | | 14 | County Dam Maintenance & Inspections (8 watershed dams only – no private dams) | Dam Failure | All | Gordon County and all
municipalities (jointly or
separately) | Ongoing | \$50K per year | Public and private funding; general funds | 2022 | 1-1, 1-2, 1-3, 1-4,
1-5, 1-6, 4-1 | Existing | | 15 | Increased School Security (Calhoun
Elementary, Board of Education, Pre-K) | All | All | Gordon County Board of
Education & City of
Calhoun | Preliminary | \$100K | Public and private funding; general funds | 2019 | 1-1, 1-2, 1-3, 4-1,
4-2 | Existing | | Priority | Mitigation Action | Hazard(s)
Addressed | Jurisdictional
Participants | Likely Lead Dept,
Jurisdiction, or Agency | Project
Status | Cost Estimate | Potential
Funding
Source(s) – not
all inclusive | Project Completion (presuming 2017 funding) | Goals and
Objectives | Structures &
Infrastructure
Impacted | |----------|--|------------------------|--------------------------------|--|-------------------|----------------|--|---|--------------------------------------|--| | 16 | New Gordon County EMA/EOC Building and Equipment | All | Gordon County | Gordon County EMA | Preliminary | \$2 million | Public and private funding; general funds | 2022 | 1-1, 1-2, 1-3, 1-5,
4-1, 4-2, 4-3 | Future | | 17 | Interoperability Communications | All | All | Gordon County EMA and
Gordon County E-911 | Preliminary | \$20 million | Public and private funding; general funds | 2022 | 3-1, 4-1, 4-2, 4-3 | Existing and Future | | 18 | City of Ranger "Worksheet 3a" data for Hazard Mitigation Plan | All | Ranger | City of Ranger | Preliminary | Staff time | General funds | 2018 | 1-1, 1-6, 4-1 | Existing | | 19 | Flood Inundation Study | Dam Failure | All | Gordon County & all
municipalities (jointly or
separately) | Preliminary | \$1 million | Public and private funding; general funds | 2022 | 1-1, 1-2, 1-3, 1-4,
1-5, 1-6, 4-1 | Existing and Future | | 20 | Water System Interconnection | Drought | All | Gordon County & all municipalities (jointly) | Ongoing | \$1.5 million | Public and private funding; general funds | 2022 | 1-1, 1-3, 1-4, 1-5,
3-1, 3-2 | Existing and Future | | 21 | Additional Fire Hydrants (SPLOST project) | All | All | Gordon County Fire-Rescue & all municipalities (jointly or separately) | In progress | \$2 million | Public and private funding; general funds | 2022 | 1-1, 1-3, 1-4, 1-5,
1-6, 4-1, 4-3 | Existing and Future | | 22 | Relocation of Fire Stations 3, 8, and 9 | All | Gordon County | Gordon County Fire-Rescue | Preliminary | \$12 million | Public and private funding; general funds | 2022 | 1-1, 1-2, 1-3, 1-5,
4-1, 4-2, 4-3 | Existing and Future | | 23 | Aerial Device 75ft | All | Gordon County | Gordon County Fire-Rescue | Preliminary | \$1 million | Public and private funding | 2019 | 1-1, 4-2 | Existing and Future | | 24 | Aerial Device 100ft | All | Calhoun | Gordon County Fire-Rescue | Preliminary | \$1.5 million | Public and private funding | 2019 | 1-1, 4-2 | Existing and Future | | 25 | New Health Department Facility (SPLOST project) | All | All | Gordon County | In progress | \$3.2 million | SPLOST, Public
and private
funding | 2019 | 1-1, 1-2, 1-3, 1-5,
4-1, 4-2, 4-3 | Existing and Future | | 26 | Three 1,000-gallon Fire Engines | All | Gordon County | Gordon County Fire-Rescue | Preliminary | \$1.2 million | Public and private funding | 2022 | 1-1, 4-2 | Existing and Future | | 27 | Heavy Rescue Squad Training, Maintenance and Replenishment of Supplies | All | All | Gordon County Fire-Rescue
and Gordon County EMA | Ongoing | \$30K per year | Public and private funding; general funds | 2022 | 1-1, 1-2, 1-3, 3-1,
4-1, 4-2, 4-3 | Existing | | 28 | Construction of Calhoun Fire Station 4 (SPLOST project) | All | Calhoun | Gordon County Fire-Rescue | In progress | \$2 million | SPLOST, Public
and private
funding | 2022 | 1-1, 1-2, 1-3, 1-5,
4-1, 4-2, 4-3 | Existing and Future | |
29 | Four 2,000-gallon Tankers | Wildfire | Gordon County | Gordon County Fire-Rescue | Preliminary | \$1 million | Public and private funding | 2021 | 1-1, 4-2 | Existing and Future | | 30 | One Platform Truck (100ft) | All | Gordon County | Gordon County Fire-Rescue | Preliminary | \$1.5 million | Public and private funding | 2019 | 1-1, 4-2 | Existing and Future | | 31 | Four Fire Boats | All | Gordon County | Gordon County Fire-Rescue | Preliminary | \$160K | Public and private funding | 2019 | 1-1, 4-2 | Existing and Future | | Priority | Mitigation Action | Hazard(s)
Addressed | Jurisdictional
Participants | Likely Lead Dept,
Jurisdiction, or Agency | Project
Status | Cost Estimate | Potential
Funding
Source(s) – not
all inclusive | Project Completion (presuming 2017 funding) | Goals and
Objectives | Structures &
Infrastructure
Impacted | |----------|--|------------------------|--------------------------------|--|-------------------|----------------------|--|---|--------------------------------------|--| | 32 | Squad Truck for Hazmat Release Incidents | Hazmat
Release | Gordon County | Gordon County Fire-Rescue and Gordon County EMA | Preliminary | \$900K | Public and private funding | 2019 | 1-1, 4-2 | Existing and Future | | 33 | Decommissioning of Sallacoa Watershed Dam
#77 | Dam Failure | Gordon County | Gordon County | Preliminary | \$3 million | Public and private funding | 2020 | 1-1, 1-2, 1-3, 1-4,
1-5, 1-6, 4-1 | Existing | | 34 | Health Department Branch in Fairmount | All | Fairmount | City of Fairmount | Preliminary | \$500K | Public and private funding | 2022 | 1-1, 1-2, 1-3, 1-5,
4-1, 4-2, 4-3 | Existing and Future | | 35 | North Georgia EMC Maintenance Plan | All | All | North Georgia EMC | Ongoing | \$4 million per year | North Georgia
EMC | 2022 | 1-1, 1-2, 1-3, 2-1,
3-1, 3-2, 4-1 | Existing and Future | | 36 | Addition of two chlorine Scrubbers for Existing Scrubber Systems – at Kirby Rd and Brittany Dr | All | All | City of Calhoun | Preliminary | \$300K each | Public and private funding; general funds | 2019 | 1-1, 1-2, 1-3, 1-4,
4-1, 4-2, 4-3 | Existing and Future | | 37 | Two Electronic Messaging Traffic Signs | All | Gordon County | Gordon County EMA | Preliminary | \$30K each | Public and private funding | 2018 | 1-1, 4-2 | Existing and Future | | 38 | Earthquake Loss Estimation Study | Earthquake | All | Gordon County EMA & all municipalities (jointly or separately) | Preliminary | \$200K | Public and private funding | 2022 | 1-1, 1-2, 1-3, 1-4,
1-5, 1-6, 4-1 | Existing and Future | | 39 | Gordon County Fire Dept. Training Facility | All | Gordon County | Gordon County Fire-Rescue | Preliminary | \$500K | Public and private funding; general funds | 2019 | 1-1, 1-2, 1-3, 1-5,
4-1, 4-2, 4-3 | Existing and Future | ## **Chapter 6 Executing the Plan** #### 6.1 – Action Plan Implementation The hazard mitigation planning process was overseen by the Gordon County Emergency Management Agency. Facilitation of the planning process was conducted by North Georgia Consulting Group, LLC. Once GEMA completes its initial review of this Plan, it will be presented to the Gordon Board of Commissioners for consideration. Once adopted, the Gordon County EMA Director shall assume responsibility for the maintenance of the Plan. It shall be the responsibility of the EMA Director to ensure that this Plan is utilized as a guide for initiating the identified mitigation measures within the community. The EMA Director shall be authorized to convene a committee to review and update this Plan annually. The Plan will also have to be updated and resubmitted once every five years. Through this Plan updating process, the EMA Director shall identify projects that have been successfully undertaken in initiating mitigation measures within the community. These projects shall be noted within the planning document to indicate their completion. Additionally, the committee called together by the EMA Director shall help to identify any new mitigation projects that can be undertaken in the community. Members of the HMPC prioritized the potential mitigation measures identified in this Plan. A list of mitigation goals, objectives and related action items was compiled from the inputs of the HMPC, as well as from others within the community. subcommittee prioritized the potential mitigation measures based on what they considered most beneficial to the community. Several criteria were established to assist HMPC members in the prioritization of these suggested mitigation actions. Criteria included perceived cost benefit or cost effectiveness, availability of potential funding sources, overall feasibility, measurable milestones, multiple objectives, and both public and political support for the proposed actions. Through this prioritization process, several projects emerged as being a greater priority than others. Some of the projects involved expending considerable amounts of funds to initiate the required actions. Most projects allowed the community to pursue completion of the project using potential grant funding. Still others required no significant financial commitment by the community. All proposed mitigation actions were evaluated to determine the degree to which the County will benefit in relation to the project costs. After review by the HMPC, the prioritized list of mitigation measures, as presented within this Plan, was determined. #### 6.2 – Evaluation As previously stated, the Gordon County EMA Director will be charged with ensuring that this plan is monitored and updated at least annually or more often if deemed necessary. The method of evaluation will consist of utilizing a checklist to determine what mitigation actions were undertaken, the completion date of these actions, the cost associated with each completed action, and whether actions were deemed to be successful. A committee, perhaps with much of the same membership as the existing HMPC, will convene in order to accomplish the annual plan evaluation. Additionally, the EMA Director is encouraged to maintain a schedule of regular meetings, either quarterly or semiannually to preserve continuity throughout the continuing process. These meetings will provide an opportunity to discuss the progress of the action items and maintain the partnerships that are essential for the sustainability of the HMP. The EMA Director will ensure the results of the evaluation(s) are reported to the Gordon County Board of Commissioners, as well as to any agencies or organizations having an interest in the hazard mitigation activities identified in the plan. #### 6.3 – Multi-Jurisdictional Strategy and Considerations As set forth by Georgia House Bill 489, the Emergency Management Agency is the overall implementing agency for projects such as hazard mitigation. Gordon County will work in the best interests of the County as well as the Cities of Calhoun, Fairmount, Plainville and Ranger, and the Town of Resaca. Each of these municipalities played an active role in the planning process. Participation from each jurisdiction was solicited and received by Gordon County EMA. As a result, a truly multi-jurisdictional plan was created for Gordon County and the Cities of Calhoun, Fairmount, Plainville and Ranger, and the Town of Resaca, with ideas and viewpoints of all participants included. #### 6.4 - Plan Update and Maintenance According to the requirements set forth in the Disaster Mitigation Act of 2000, Gordon County is required to update and revise the Hazard Mitigation Plan every five years. However, the Hazard Mitigation Planning Committee will meet on the plan approval anniversary date of every year, or within 30 days of said date as determined and scheduled by the EMA Director, to complete a review of the Hazard Mitigation Plan. At each such meeting, the HMPC will review the main facets of the HMP including the vulnerability assessment, critical facilities inventory, and mitigation goals, objectives, and actions. All revisions will be posted to the County website for public review and comment. Further revisions may take place based upon public comments received. It is during this review process that the mitigation strategies and other information contained within the Hazard Mitigation Plan are considered for incorporation into other planning mechanisms as appropriate. Opportunities to integrate the requirements of this HMP into other local planning mechanisms will continue to be identified through future meetings of the HMPC on an annual basis. The HMPC recognizes the need to integrate other plans, codes, regulations, procedures and programs into future Hazard Mitigation Plan (HMP) updates. This plan is multijurisdictional; therefore the mechanism for implementation of various mitigation plan items may vary by jurisdiction. This includes reviewing other local planning documents, processes or mechanisms for possible integration with the HMP. To Be Reviewed in Future Update | Existing planning mechanisms | Method of use in Hazard Mitigation
Plan | |---|--| | Comprehensive Plan (multi-jurisdictional) | Development trends | | Local Emergency Operations Plan | Identifying hazards;
Assessing vulnerabilities | | Storm Water Management / Flood Damage
Protection Ordinance | Mitigation strategies | | Building and Zoning Codes and
Ordinances | Development trends; Future growth | | Mutual Aid Agreements | Assessing vulnerabilities | | State Hazard Mitigation Plan | Risk assessment | | Land Use Maps | Assessing
vulnerabilities; Development trends; Future growth | | Critical Facilities Maps | Locations | | Community Wildfire Protection Plan | Mitigation strategies | It will be the responsibility of each participating jurisdiction to determine additional implementation procedures when appropriate. During the planning process for new and updated local planning documents such as a comprehensive plan or Local Emergency Operations Plan, the EMA Director will provide a copy of the HMP to the appropriate parties. It will be recommended that all goals and strategies of new and updated local planning documents be consistent with, and support the goals of, the HMP and will not contribute to increased hazards in the affected jurisdiction(s). Although it is recognized that there are many benefits to integrating components of this plan into other local planning mechanisms, and that components are actively integrated into other planning mechanisms when appropriate, the development and maintenance of this stand-alone HMP is deemed by the committee to be the most effective method to ensure implementation of local hazard mitigation actions at this time. Therefore, the review and incorporation efforts made in this update and the last, which consisted of a simple review of the documents listed in the chart above by various members of the HMPC, are considered successful by the HMPC and will likely be utilized in future updates. The County's EMA is committed to incorporating hazard mitigation planning into its Local Emergency Operations Plan and other public emergency management activities. As the EMA Director becomes aware of updates to other County or City/Town plans, codes, regulations, procedures and programs, the Director will continue to look for opportunities to include hazard mitigation into these mechanisms. The Gordon County HMPC will reconvene not later than the fourth anniversary of the plan approval anniversary date, as determined and scheduled by the EMA Director, to begin planning for the formal Hazard Mitigation Plan revision process. The revision process will include a clear schedule and timeline, and identify any agencies or organizations participating in the plan revision. The committee will review the mitigation goals, objectives and actions to determine their relevance to changing situations within the different jurisdictions, as well as changes in State or Federal policy, and to ensure current and expected conditions are being addressed. The HMPC will also review the prior vulnerability assessments to determine if this information should be updated or modified, given any new available data. Gordon County is dedicated to involving the public directly in reviews and updates of the HMP. During the plan revision process, the committee will conduct, at a minimum, two public hearings during the revision process. These public hearings will provide the public a forum for which they can express their concerns, opinions, or ideas about the Plan. Additionally, if persons from the community express interest in participation in the planning process, they will be provided the opportunity, via meetings, the County website, social media, and/or public forums, to suggest possible mitigation measures for the community. Documentation will be maintained to indicate all efforts at continued public involvement. All relevant information will be forwarded to GEMA and FEMA as a product of the proposed plan revision. Public involvement activities will continue throughout the 5 year planning cycle and will be evaluated for effectiveness by the HMPC next planning cycle. The EMA Director will ensure the revised plan is presented to the governing body of each jurisdiction for formal adoption. In addition, all holders of the HMP will be notified of affected changes. The EMA Director shall submit a revised Hazard Mitigation Plan not later than the five-year anniversary of the most recently updated HMP to the Georgia Emergency Management Agency for review and subsequent submittal to the Federal Emergency Management Agency for ultimate approval. Once approved by FEMA, copies of the Gordon County Hazard Mitigation Plan will be provided by the EMA Director to the appropriate governmental jurisdictions, agencies, and/or departments for review and possible inclusion into plans and programs. The HMP will be distributed by the EMA Director to the appropriate officials to allow them to review the Plan and determine to what extent the Plan should be integrated into, or referenced by, other plans and programs. Limitations may be placed on certain sensitive information by the EMA Director. ## **Chapter 7 Conclusion** #### **7.1** – **Summary** Gordon County has gained a great deal of knowledge relating to the County's disaster history and future potential for disaster as a result of the hazard mitigation planning process. This includes an extensive hazard history of recorded hazard events from the past fifty years, a detailed critical facilities database with valuable information on some of most critical county and city/town structures, as well as some valuable ideas from the community abroad concerning measures that should be considered for future hazard mitigation. Community involvement has been at the heart of this effort. Not only did the planning process include the creation of a Hazard Mitigation Planning Committee with representatives from all walks of life, but two public hearings were conducted to provide all Gordon County citizens with the opportunity to comment on, and offer suggestions concerning potential hazard mitigation measures within the community. Gordon County, the Cities of Calhoun, Fairmount, Plainville and Ranger, and the Town of Resaca all worked in concert to ensure a broad range of citizens were represented. Elected officials, local government employees, public safety officials, Red Cross representatives, GA Forestry representatives, businesspersons, media, and other volunteers and interested parties provided important varying viewpoints to create a workable Plan. GEMA and NGCG provided valuable assistance as well. These efforts have all had the effect of better protecting our Community from the threats of nature and technology. While it would be naïve to believe this Plan provides complete protection to Gordon County and its residents, it is the hope of all parties involved in this planning process that the recommended mitigation measures contained within the Plan will provide some level of increased preparedness as well as spur further discussion and planning related to the important subject of Hazard Mitigation. #### 7.2 – References Numerous sources were utilized to ensure the most complete planning document could be assembled: #### **Publications/Documents:** The Disaster Mitigation Act of 2000 Robert T. Stafford Disaster Relief and Emergency Assistance Act FEMA Pre-Disaster Mitigation How-to Guides #1, 2, 3, 7 GEMA Supplements to FEMA Pre-Disaster Mitigation How-to Guides *Georgia Tornado Database 1808 – 2002* (Westbrook) Earthquake Information Bulletin, Volume 3, Number 6, November-December 1971 Gordon County Hazard Mitigation Plan #### Web Sites: www.fema.gov (FEMA) www.usfa.fema.gov (USFA) www.fs.fed.us (USFS Fire Danger Class) www.cpc.ncep-noaa.gov (Drought Severity Index) www.ncdc.noaa.gov (National Climatic Data Center) http://eqint.cr.usgs.gov (USGS Earthquake Probability Maps) www.tornadoproject.com (Tornado Project Online) www.disastercenter.com (The Disaster Center) www.gema.state.ga.us (GEMA) www.gfc.state.ga.us (GFC) www.georgiadrought.org (Drought in Georgia) www.weather.com (The Weather Channel) www.accuweather.com (AccuWeather) www.gwrr.com (Genesee & Wyoming, Inc.) #### **Other Sources:** American Red Cross American Society of Civil Engineers Gordon County City of Calhoun City of Fairmount City of Plainville City of Ranger Town of Resaca Federal Emergency Management Agency Georgia Department of Natural Resources Georgia Emergency Management Agency Georgia Forestry Commission Georgia Safe Dams Program National Climatic Data Center National Oceanic & Atmospheric Administration National Weather Service New Georgia Encyclopedia (<u>www.georgiaencyclopedia.org</u>) U.S. Army Corps of Engineers U.S. Census Bureau U.S. Fire Administration U.S. Forest Service U.S. Geological Survey ### **Appendices** Appendix A – Critical Facilities Database Appendix B – Hazard History Database Appendix C – Hazard Frequency Table Appendix D – Other Planning Documents Appendix E - Glossary